open import GpdCont.Prelude open import GpdCont.TwoCategory.Base module GpdCont.TwoCategory.Displayed.Unit {ℓo ℓh ℓr : Level} (C : TwoCategory ℓo ℓh ℓr) where private module C = TwoCategory C open import GpdCont.TwoCategory.LaxFunctor open import GpdCont.TwoCategory.StrictFunctor open import GpdCont.TwoCategory.Displayed.Base open import GpdCont.TwoCategory.Displayed.LaxFunctor open import GpdCont.TwoCategory.Displayed.StrictFunctor open import Cubical.Data.Unit using (Unit ; tt ; isOfHLevelUnit) Unitᴰ : TwoCategoryᴰ C ℓ-zero ℓ-zero ℓ-zero Unitᴰ .TwoCategoryᴰ.ob[_] _ = Unit Unitᴰ .TwoCategoryᴰ.hom[_] _ _ _ = Unit Unitᴰ .TwoCategoryᴰ.rel[_] _ _ _ = Unit Unitᴰ .TwoCategoryᴰ.two-category-structureᴰ .TwoCategoryStrᴰ.id-homᴰ _ = tt Unitᴰ .TwoCategoryᴰ.two-category-structureᴰ .TwoCategoryStrᴰ.comp-homᴰ _ _ = tt Unitᴰ .TwoCategoryᴰ.two-category-structureᴰ .TwoCategoryStrᴰ.id-relᴰ _ = tt Unitᴰ .TwoCategoryᴰ.two-category-structureᴰ .TwoCategoryStrᴰ.transᴰ _ _ = tt Unitᴰ .TwoCategoryᴰ.two-category-structureᴰ .TwoCategoryStrᴰ.comp-relᴰ _ _ = tt Unitᴰ .TwoCategoryᴰ.is-two-categoryᴰ .IsTwoCategoryᴰ.is-set-relᴰ _ _ = isOfHLevelUnit 2 Unitᴰ .TwoCategoryᴰ.is-two-categoryᴰ .IsTwoCategoryᴰ.trans-assocᴰ _ _ _ = refl Unitᴰ .TwoCategoryᴰ.is-two-categoryᴰ .IsTwoCategoryᴰ.trans-unit-leftᴰ _ = refl Unitᴰ .TwoCategoryᴰ.is-two-categoryᴰ .IsTwoCategoryᴰ.trans-unit-rightᴰ _ = refl Unitᴰ .TwoCategoryᴰ.is-two-categoryᴰ .IsTwoCategoryᴰ.comp-rel-idᴰ _ _ = refl Unitᴰ .TwoCategoryᴰ.is-two-categoryᴰ .IsTwoCategoryᴰ.comp-rel-transᴰ _ _ _ _ = refl Unitᴰ .TwoCategoryᴰ.is-two-categoryᴰ .IsTwoCategoryᴰ.comp-hom-assocᴰ _ _ _ = refl Unitᴰ .TwoCategoryᴰ.is-two-categoryᴰ .IsTwoCategoryᴰ.comp-hom-unit-leftᴰ _ = refl Unitᴰ .TwoCategoryᴰ.is-two-categoryᴰ .IsTwoCategoryᴰ.comp-hom-unit-rightᴰ _ = refl Unitᴰ .TwoCategoryᴰ.is-two-categoryᴰ .IsTwoCategoryᴰ.comp-rel-assocᴰ _ _ _ = refl Unitᴰ .TwoCategoryᴰ.is-two-categoryᴰ .IsTwoCategoryᴰ.comp-rel-unit-leftᴰ _ = refl Unitᴰ .TwoCategoryᴰ.is-two-categoryᴰ .IsTwoCategoryᴰ.comp-rel-unit-rightᴰ _ = refl UnitOver : TwoCategory ℓo ℓh ℓr UnitOver = TotalTwoCategory.∫ C Unitᴰ AddUnit : StrictFunctor C UnitOver AddUnit .StrictFunctor.F-ob = _, tt AddUnit .StrictFunctor.F-hom = _, tt AddUnit .StrictFunctor.F-rel = _, tt AddUnit .StrictFunctor.F-rel-id = refl AddUnit .StrictFunctor.F-rel-trans r s = refl AddUnit .StrictFunctor.F-hom-comp f g = refl AddUnit .StrictFunctor.F-hom-id x = refl AddUnit .StrictFunctor.F-assoc-filler-left f g h .fst = refl AddUnit .StrictFunctor.F-assoc-filler-left f g h .snd = reflSquare _ AddUnit .StrictFunctor.F-assoc-filler-right f g h .fst = refl AddUnit .StrictFunctor.F-assoc-filler-right f g h .snd = reflSquare _ AddUnit .StrictFunctor.F-assoc f g h = λ i j → C.comp-hom-assoc f g h i , tt AddUnit .StrictFunctor.F-unit-left-filler f .fst = refl AddUnit .StrictFunctor.F-unit-left-filler f .snd = reflSquare _ AddUnit .StrictFunctor.F-unit-left f = λ i j → C.comp-hom-unit-left f i , tt AddUnit .StrictFunctor.F-unit-right-filler f .fst = refl AddUnit .StrictFunctor.F-unit-right-filler f .snd = reflSquare _ AddUnit .StrictFunctor.F-unit-right f = λ i j → C.comp-hom-unit-right f i , tt module _ {ℓo′ ℓh′ ℓr′ ℓoᴰ ℓhᴰ ℓrᴰ} {D : TwoCategory ℓo′ ℓh′ ℓr′} (F : StrictFunctor C D) {Dᴰ : TwoCategoryᴰ D ℓoᴰ ℓhᴰ ℓrᴰ} (Fᴰ : StrictFunctorᴰ F Unitᴰ Dᴰ) where private ∫D = TotalTwoCategory.∫ D Dᴰ module F = StrictFunctor F module Fᴰ = StrictFunctorᴰ Fᴰ ReindexUnit : StrictFunctor C ∫D ReindexUnit .StrictFunctor.F-ob x .fst = F.₀ x ReindexUnit .StrictFunctor.F-ob x .snd = Fᴰ.₀ tt ReindexUnit .StrictFunctor.F-hom f .fst = F.₁ f ReindexUnit .StrictFunctor.F-hom f .snd = Fᴰ.₁ tt ReindexUnit .StrictFunctor.F-rel r .fst = F.₂ r ReindexUnit .StrictFunctor.F-rel r .snd = Fᴰ.₂ tt ReindexUnit .StrictFunctor.F-rel-id {f = f} i .fst = F.F-rel-id {f = f} i ReindexUnit .StrictFunctor.F-rel-id {f = f} i .snd = Fᴰ.F-rel-idᴰ tt i ReindexUnit .StrictFunctor.F-rel-trans r s i .fst = F.F-rel-trans r s i ReindexUnit .StrictFunctor.F-rel-trans r s i .snd = Fᴰ.F-rel-transᴰ tt tt i ReindexUnit .StrictFunctor.F-hom-comp f g i .fst = F.F-hom-comp f g i ReindexUnit .StrictFunctor.F-hom-comp f g i .snd = Fᴰ.F-hom-compᴰ tt tt i ReindexUnit .StrictFunctor.F-hom-id x i .fst = F.F-hom-id x i ReindexUnit .StrictFunctor.F-hom-id x i .snd = Fᴰ.F-hom-idᴰ tt i ReindexUnit .StrictFunctor.F-assoc-filler-left f g h .fst i .fst = F.F-assoc-filler-left f g h .fst i ReindexUnit .StrictFunctor.F-assoc-filler-left f g h .fst i .snd = Fᴰ.F-assoc-filler-leftᴰ tt tt tt .fst i ReindexUnit .StrictFunctor.F-assoc-filler-left f g h .snd i j .fst = F.F-assoc-filler-left f g h .snd i j ReindexUnit .StrictFunctor.F-assoc-filler-left f g h .snd i j .snd = Fᴰ.F-assoc-filler-leftᴰ tt tt tt .snd i j ReindexUnit .StrictFunctor.F-assoc-filler-right f g h .fst i .fst = F.F-assoc-filler-right f g h .fst i ReindexUnit .StrictFunctor.F-assoc-filler-right f g h .fst i .snd = Fᴰ.F-assoc-filler-rightᴰ tt tt tt .fst i ReindexUnit .StrictFunctor.F-assoc-filler-right f g h .snd i j .fst = F.F-assoc-filler-right f g h .snd i j ReindexUnit .StrictFunctor.F-assoc-filler-right f g h .snd i j .snd = Fᴰ.F-assoc-filler-rightᴰ tt tt tt .snd i j ReindexUnit .StrictFunctor.F-assoc f g h i j .fst = F.F-assoc f g h i j ReindexUnit .StrictFunctor.F-assoc f g h i j .snd = Fᴰ.F-assocᴰ tt tt tt i j ReindexUnit .StrictFunctor.F-unit-left-filler f .fst i .fst = F.F-unit-left-filler f .fst i ReindexUnit .StrictFunctor.F-unit-left-filler f .fst i .snd = Fᴰ.F-unit-left-fillerᴰ tt .fst i ReindexUnit .StrictFunctor.F-unit-left-filler f .snd i j .fst = F.F-unit-left-filler f .snd i j ReindexUnit .StrictFunctor.F-unit-left-filler f .snd i j .snd = Fᴰ.F-unit-left-fillerᴰ tt .snd i j ReindexUnit .StrictFunctor.F-unit-left f i j .fst = F.F-unit-left f i j ReindexUnit .StrictFunctor.F-unit-left f i j .snd = Fᴰ.F-unit-leftᴰ tt i j ReindexUnit .StrictFunctor.F-unit-right-filler f .fst i .fst = F.F-unit-right-filler f .fst i ReindexUnit .StrictFunctor.F-unit-right-filler f .fst i .snd = Fᴰ.F-unit-right-fillerᴰ tt .fst i ReindexUnit .StrictFunctor.F-unit-right-filler f .snd i j .fst = F.F-unit-right-filler f .snd i j ReindexUnit .StrictFunctor.F-unit-right-filler f .snd i j .snd = Fᴰ.F-unit-right-fillerᴰ tt .snd i j ReindexUnit .StrictFunctor.F-unit-right f i j .fst = F.F-unit-right f i j ReindexUnit .StrictFunctor.F-unit-right f i j .snd = Fᴰ.F-unit-rightᴰ tt i j