module GpdCont.TwoCategory.Displayed.StrictFunctor where
open import GpdCont.Prelude
open import GpdCont.TwoCategory.Base
open import GpdCont.TwoCategory.StrictFunctor
open import GpdCont.TwoCategory.Displayed.Base
open TotalTwoCategory using (∫)
module _
{ℓoC ℓoCᴰ ℓoD ℓoDᴰ}
{ℓhC ℓhCᴰ ℓhD ℓhDᴰ}
{ℓrC ℓrCᴰ ℓrD ℓrDᴰ}
{C : TwoCategory ℓoC ℓhC ℓrC}
{D : TwoCategory ℓoD ℓhD ℓrD}
(F : StrictFunctor C D)
(Cᴰ : TwoCategoryᴰ C ℓoCᴰ ℓhCᴰ ℓrCᴰ)
(Dᴰ : TwoCategoryᴰ D ℓoDᴰ ℓhDᴰ ℓrDᴰ)
where
private
ℓ : Level
ℓ = ℓMax ℓoC ℓoCᴰ ℓoD ℓoDᴰ ℓhC ℓhCᴰ ℓhD ℓhDᴰ ℓrC ℓrCᴰ ℓrD ℓrDᴰ
module C = TwoCategory C
module D = TwoCategory D
open module F = StrictFunctor F hiding (₀ ; ₁ ; ₂)
module Cᴰ = TwoCategoryᴰ Cᴰ
module Dᴰ = TwoCategoryᴰ Dᴰ
record StrictFunctorᴰ : Type ℓ where
no-eta-equality
field
F-obᴰ : {x : C.ob}
→ Cᴰ.ob[ x ] → Dᴰ.ob[ F.₀ x ]
F-homᴰ : {x y : C.ob} {f : C.hom x y}
→ {xᴰ : Cᴰ.ob[ x ]} {yᴰ : Cᴰ.ob[ y ]}
→ Cᴰ.hom[ f ] xᴰ yᴰ → Dᴰ.hom[ F.₁ f ] (F-obᴰ xᴰ) (F-obᴰ yᴰ)
F-relᴰ : {x y : C.ob} {f g : C.hom x y} {r : C.rel f g}
→ {xᴰ : Cᴰ.ob[ x ]} {yᴰ : Cᴰ.ob[ y ]}
→ {fᴰ : Cᴰ.hom[ f ] xᴰ yᴰ}
→ {gᴰ : Cᴰ.hom[ g ] xᴰ yᴰ}
→ Cᴰ.rel[ r ] fᴰ gᴰ → Dᴰ.rel[ F.₂ r ] (F-homᴰ fᴰ) (F-homᴰ gᴰ)
₀ = F-obᴰ
₁ = F-homᴰ
₂ = F-relᴰ
field
F-rel-idᴰ : {x y : C.ob} {f : C.hom x y}
→ {xᴰ : Cᴰ.ob[ x ]} {yᴰ : Cᴰ.ob[ y ]}
→ (fᴰ : Cᴰ.hom[ f ] xᴰ yᴰ)
→ PathP (λ i → Dᴰ.rel[ F-rel-id {f = f} i ] (F-homᴰ fᴰ) (F-homᴰ fᴰ))
(F-relᴰ (Cᴰ.id-relᴰ fᴰ))
(Dᴰ.id-relᴰ (F-homᴰ fᴰ))
F-rel-transᴰ : {x y : C.ob} {f g h : C.hom x y} {r : C.rel f g} {s : C.rel g h}
→ {xᴰ : Cᴰ.ob[ x ]} {yᴰ : Cᴰ.ob[ y ]}
→ {fᴰ : Cᴰ.hom[ f ] xᴰ yᴰ}
→ {gᴰ : Cᴰ.hom[ g ] xᴰ yᴰ}
→ {hᴰ : Cᴰ.hom[ h ] xᴰ yᴰ}
→ (rᴰ : Cᴰ.rel[ r ] fᴰ gᴰ)
→ (sᴰ : Cᴰ.rel[ s ] gᴰ hᴰ)
→ PathP (λ i → Dᴰ.rel[ F-rel-trans r s i ] (F-homᴰ fᴰ) (F-homᴰ hᴰ))
(F-relᴰ (rᴰ Cᴰ.∙ᵥᴰ sᴰ))
((F-relᴰ rᴰ) Dᴰ.∙ᵥᴰ (F-relᴰ sᴰ))
field
F-hom-compᴰ : {x y z : C.ob} {f : C.hom x y} {g : C.hom y z}
→ {xᴰ : Cᴰ.ob[ x ]} {yᴰ : Cᴰ.ob[ y ]} {zᴰ : Cᴰ.ob[ z ]}
→ (fᴰ : Cᴰ.hom[ f ] xᴰ yᴰ)
→ (gᴰ : Cᴰ.hom[ g ] yᴰ zᴰ)
→ PathP (λ i → Dᴰ.hom[ F-hom-comp f g i ] (F-obᴰ xᴰ) (F-obᴰ zᴰ))
(F-homᴰ fᴰ Dᴰ.∙₁ᴰ F-homᴰ gᴰ)
(F-homᴰ (fᴰ Cᴰ.∙₁ᴰ gᴰ))
F-hom-idᴰ : {x : C.ob} (xᴰ : Cᴰ.ob[ x ])
→ PathP (λ i → Dᴰ.hom[ F-hom-id x i ] (F-obᴰ xᴰ) (F-obᴰ xᴰ))
(Dᴰ.id-homᴰ (F-obᴰ xᴰ))
(F-homᴰ (Cᴰ.id-homᴰ xᴰ))
field
F-assoc-filler-leftᴰ : {x y z w : C.ob}
→ {f : C.hom x y} {g : C.hom y z} {h : C.hom z w}
→ {xᴰ : Cᴰ.ob[ x ]} {yᴰ : Cᴰ.ob[ y ]} {zᴰ : Cᴰ.ob[ z ]} {wᴰ : Cᴰ.ob[ w ]}
→ (fᴰ : Cᴰ.hom[ f ] xᴰ yᴰ)
→ (gᴰ : Cᴰ.hom[ g ] yᴰ zᴰ)
→ (hᴰ : Cᴰ.hom[ h ] zᴰ wᴰ)
→ DoubleCompPathPFiller
(λ i j → Dᴰ.hom[ F-assoc-filler-left f g h .snd i j ] (F-obᴰ xᴰ) (F-obᴰ wᴰ))
refl
(λ i → F-hom-compᴰ fᴰ gᴰ i Dᴰ.∙₁ᴰ F-homᴰ hᴰ)
(F-hom-compᴰ (fᴰ Cᴰ.∙₁ᴰ gᴰ) hᴰ)
F-assoc-filler-rightᴰ : {x y z w : C.ob}
→ {f : C.hom x y} {g : C.hom y z} {h : C.hom z w}
→ {xᴰ : Cᴰ.ob[ x ]} {yᴰ : Cᴰ.ob[ y ]} {zᴰ : Cᴰ.ob[ z ]} {wᴰ : Cᴰ.ob[ w ]}
→ (fᴰ : Cᴰ.hom[ f ] xᴰ yᴰ)
→ (gᴰ : Cᴰ.hom[ g ] yᴰ zᴰ)
→ (hᴰ : Cᴰ.hom[ h ] zᴰ wᴰ)
→ DoubleCompPathPFiller
(λ i j → Dᴰ.hom[ F-assoc-filler-right f g h .snd i j ] (F-obᴰ xᴰ) (F-obᴰ wᴰ))
refl
(λ i → F-homᴰ fᴰ Dᴰ.∙₁ᴰ F-hom-compᴰ gᴰ hᴰ i)
(F-hom-compᴰ fᴰ (gᴰ Cᴰ.∙₁ᴰ hᴰ))
F-assocᴰ : {x y z w : C.ob}
→ {f : C.hom x y} {g : C.hom y z} {h : C.hom z w}
→ {xᴰ : Cᴰ.ob[ x ]} {yᴰ : Cᴰ.ob[ y ]} {zᴰ : Cᴰ.ob[ z ]} {wᴰ : Cᴰ.ob[ w ]}
→ (fᴰ : Cᴰ.hom[ f ] xᴰ yᴰ)
→ (gᴰ : Cᴰ.hom[ g ] yᴰ zᴰ)
→ (hᴰ : Cᴰ.hom[ h ] zᴰ wᴰ)
→ SquareP (λ i j → Dᴰ.hom[ F-assoc f g h i j ] (F-obᴰ xᴰ) (F-obᴰ wᴰ))
(F-assoc-filler-leftᴰ fᴰ gᴰ hᴰ .fst)
(F-assoc-filler-rightᴰ fᴰ gᴰ hᴰ .fst)
(Dᴰ.comp-hom-assocᴰ (F-homᴰ fᴰ) (F-homᴰ gᴰ) (F-homᴰ hᴰ))
(λ i → F-homᴰ (Cᴰ.comp-hom-assocᴰ fᴰ gᴰ hᴰ i))
F-unit-left-fillerᴰ : {x y : C.ob} {f : C.hom x y}
→ {xᴰ : Cᴰ.ob[ x ]} {yᴰ : Cᴰ.ob[ y ]}
→ (fᴰ : Cᴰ.hom[ f ] xᴰ yᴰ)
→ DoubleCompPathPFiller
(λ i j → Dᴰ.hom[ F-unit-left-filler f .snd i j ] (F-obᴰ xᴰ) (F-obᴰ yᴰ))
refl
(λ j → F-hom-idᴰ xᴰ j Dᴰ.∙₁ᴰ F-homᴰ fᴰ)
(F-hom-compᴰ (Cᴰ.id-homᴰ xᴰ) fᴰ)
F-unit-leftᴰ : {x y : C.ob} {f : C.hom x y}
→ {xᴰ : Cᴰ.ob[ x ]} {yᴰ : Cᴰ.ob[ y ]}
→ (fᴰ : Cᴰ.hom[ f ] xᴰ yᴰ)
→ SquareP (λ i j → Dᴰ.hom[ F-unit-left f i j ] (F-obᴰ xᴰ) (F-obᴰ yᴰ))
(F-unit-left-fillerᴰ fᴰ .fst)
(refl′ (F-homᴰ fᴰ))
(Dᴰ.comp-hom-unit-leftᴰ (F-homᴰ fᴰ))
(λ i → F-homᴰ (Cᴰ.comp-hom-unit-leftᴰ fᴰ i))
F-unit-right-fillerᴰ : {x y : C.ob} {f : C.hom x y}
→ {xᴰ : Cᴰ.ob[ x ]} {yᴰ : Cᴰ.ob[ y ]}
→ (fᴰ : Cᴰ.hom[ f ] xᴰ yᴰ)
→ DoubleCompPathPFiller
(λ i j → Dᴰ.hom[ F-unit-right-filler f .snd i j ] (F-obᴰ xᴰ) (F-obᴰ yᴰ))
refl
(λ j → F-homᴰ fᴰ Dᴰ.∙₁ᴰ F-hom-idᴰ yᴰ j)
(F-hom-compᴰ fᴰ (Cᴰ.id-homᴰ yᴰ))
F-unit-rightᴰ : {x y : C.ob} {f : C.hom x y}
→ {xᴰ : Cᴰ.ob[ x ]} {yᴰ : Cᴰ.ob[ y ]}
→ (fᴰ : Cᴰ.hom[ f ] xᴰ yᴰ)
→ SquareP (λ i j → Dᴰ.hom[ F-unit-right f i j ] (F-obᴰ xᴰ) (F-obᴰ yᴰ))
(F-unit-right-fillerᴰ fᴰ .fst)
(refl′ (F-homᴰ fᴰ))
(Dᴰ.comp-hom-unit-rightᴰ (F-homᴰ fᴰ))
(λ i → F-homᴰ (Cᴰ.comp-hom-unit-rightᴰ fᴰ i))
toTotalFunctor : StrictFunctor (∫ C Cᴰ) (∫ D Dᴰ)
toTotalFunctor .StrictFunctor.F-ob (x , xᴰ) .fst = F-ob x
toTotalFunctor .StrictFunctor.F-ob (x , xᴰ) .snd = F-obᴰ xᴰ
toTotalFunctor .StrictFunctor.F-hom (f , fᴰ) .fst = F-hom f
toTotalFunctor .StrictFunctor.F-hom (f , fᴰ) .snd = F-homᴰ fᴰ
toTotalFunctor .StrictFunctor.F-rel (r , rᴰ) .fst = F-rel r
toTotalFunctor .StrictFunctor.F-rel (r , rᴰ) .snd = F-relᴰ rᴰ
toTotalFunctor .StrictFunctor.F-rel-id {f = f , fᴰ} i .fst = F-rel-id {f = f} i
toTotalFunctor .StrictFunctor.F-rel-id {f = f , fᴰ} i .snd = F-rel-idᴰ fᴰ i
toTotalFunctor .StrictFunctor.F-rel-trans (r , rᴰ) (s , sᴰ) i .fst = F-rel-trans r s i
toTotalFunctor .StrictFunctor.F-rel-trans (r , rᴰ) (s , sᴰ) i .snd = F-rel-transᴰ rᴰ sᴰ i
toTotalFunctor .StrictFunctor.F-hom-comp (f , fᴰ) (g , gᴰ) i .fst = F-hom-comp f g i
toTotalFunctor .StrictFunctor.F-hom-comp (f , fᴰ) (g , gᴰ) i .snd = F-hom-compᴰ fᴰ gᴰ i
toTotalFunctor .StrictFunctor.F-hom-id (x , xᴰ) i .fst = F-hom-id x i
toTotalFunctor .StrictFunctor.F-hom-id (x , xᴰ) i .snd = F-hom-idᴰ xᴰ i
toTotalFunctor .StrictFunctor.F-assoc-filler-left (f , fᴰ) (g , gᴰ) (h , hᴰ) .fst i .fst = F-assoc-filler-left f g h .fst i
toTotalFunctor .StrictFunctor.F-assoc-filler-left (f , fᴰ) (g , gᴰ) (h , hᴰ) .fst i .snd = F-assoc-filler-leftᴰ fᴰ gᴰ hᴰ .fst i
toTotalFunctor .StrictFunctor.F-assoc-filler-left (f , fᴰ) (g , gᴰ) (h , hᴰ) .snd i j .fst = F-assoc-filler-left f g h .snd i j
toTotalFunctor .StrictFunctor.F-assoc-filler-left (f , fᴰ) (g , gᴰ) (h , hᴰ) .snd i j .snd = F-assoc-filler-leftᴰ fᴰ gᴰ hᴰ .snd i j
toTotalFunctor .StrictFunctor.F-assoc-filler-right (f , fᴰ) (g , gᴰ) (h , hᴰ) .fst i .fst = F-assoc-filler-right f g h .fst i
toTotalFunctor .StrictFunctor.F-assoc-filler-right (f , fᴰ) (g , gᴰ) (h , hᴰ) .fst i .snd = F-assoc-filler-rightᴰ fᴰ gᴰ hᴰ .fst i
toTotalFunctor .StrictFunctor.F-assoc-filler-right (f , fᴰ) (g , gᴰ) (h , hᴰ) .snd i j .fst = F-assoc-filler-right f g h .snd i j
toTotalFunctor .StrictFunctor.F-assoc-filler-right (f , fᴰ) (g , gᴰ) (h , hᴰ) .snd i j .snd = F-assoc-filler-rightᴰ fᴰ gᴰ hᴰ .snd i j
toTotalFunctor .StrictFunctor.F-assoc (f , fᴰ) (g , gᴰ) (h , hᴰ) i j .fst = F-assoc f g h i j
toTotalFunctor .StrictFunctor.F-assoc (f , fᴰ) (g , gᴰ) (h , hᴰ) i j .snd = F-assocᴰ fᴰ gᴰ hᴰ i j
toTotalFunctor .StrictFunctor.F-unit-left-filler (f , fᴰ) .fst i .fst = F-unit-left-filler f .fst i
toTotalFunctor .StrictFunctor.F-unit-left-filler (f , fᴰ) .fst i .snd = F-unit-left-fillerᴰ fᴰ .fst i
toTotalFunctor .StrictFunctor.F-unit-left-filler (f , fᴰ) .snd i j .fst = F-unit-left-filler f .snd i j
toTotalFunctor .StrictFunctor.F-unit-left-filler (f , fᴰ) .snd i j .snd = F-unit-left-fillerᴰ fᴰ .snd i j
toTotalFunctor .StrictFunctor.F-unit-left (f , fᴰ) i j .fst = F-unit-left f i j
toTotalFunctor .StrictFunctor.F-unit-left (f , fᴰ) i j .snd = F-unit-leftᴰ fᴰ i j
toTotalFunctor .StrictFunctor.F-unit-right-filler (f , fᴰ) .fst i .fst = F-unit-right-filler f .fst i
toTotalFunctor .StrictFunctor.F-unit-right-filler (f , fᴰ) .fst i .snd = F-unit-right-fillerᴰ fᴰ .fst i
toTotalFunctor .StrictFunctor.F-unit-right-filler (f , fᴰ) .snd i j .fst = F-unit-right-filler f .snd i j
toTotalFunctor .StrictFunctor.F-unit-right-filler (f , fᴰ) .snd i j .snd = F-unit-right-fillerᴰ fᴰ .snd i j
toTotalFunctor .StrictFunctor.F-unit-right (f , fᴰ) i j .fst = F-unit-right f i j
toTotalFunctor .StrictFunctor.F-unit-right (f , fᴰ) i j .snd = F-unit-rightᴰ fᴰ i j