Derivatives for Containers in Univalent Foundations
Cubical.Homotopy.Base
Initializing search
    phijor/derivatives
    • Overview
    • Library
    phijor/derivatives
    • Overview
      • Derivative.Bag
      • Derivative.Adjunction
      • Derivative.Basics.Sum
      • Derivative.Basics.Unit
      • Derivative.Basics.W
      • Derivative.Basics.Decidable
      • Derivative.Basics.Embedding
      • Derivative.Basics.Equiv
      • Derivative.Basics.Maybe
      • Derivative.Basics.Sigma
      • Derivative.Category
      • Derivative.ChainRule
      • Derivative.Container
      • Derivative.Derivative
      • Derivative.Indexed.Mu
      • Derivative.Indexed.ChainRule
      • Derivative.Indexed.Container
      • Derivative.Indexed.Derivative
      • Derivative.Indexed.MuRule
      • Derivative.Indexed.Univalence
      • Derivative.Isolated.Base
      • Derivative.Isolated
      • Derivative.Isolated.S1
      • Derivative.Isolated.Sum
      • Derivative.Isolated.W
      • Derivative.Isolated.DependentGrafting
      • Derivative.Isolated.Grafting
      • Derivative.Isolated.Maybe
      • Derivative.Isolated.Sigma
      • Derivative.Prelude
      • Derivative.Properties
      • Derivative.Remove

    Cubical.Homotopy.Base

    module Cubical.Homotopy.Base where
    
    open import Cubical.Foundations.Prelude
    open import Cubical.Foundations.Equiv.Properties
    
    private
      variable
        ℓ ℓ' : Level
    
    _∼_ : {X : Type ℓ} {Y : X → Type ℓ'} → (f g : (x : X) → Y x) → Type (ℓ-max ℓ ℓ')
    _∼_ {X = X} f g = (x : X) → f x ≡ g x
    
    funExt∼ : {X : Type ℓ} {Y : X → Type ℓ'} {f g : (x : X) → Y x} (H : f ∼ g) → f ≡ g
    funExt∼ = funExt
    
    ∼-refl : {X : Type ℓ} {Y : X → Type ℓ'} {f : (x : X) → Y x} → f ∼ f
    ∼-refl {f = f} = λ x → refl {x = f x}
    
    Made with Material for MkDocs