Derivative.Basics.Unit
{-# OPTIONS --safe #-} module Derivative.Basics.Unit where open import Derivative.Prelude open import Cubical.Foundations.Univalence private variable β : Level A : Type β isContr-π* : isContr (π* {β}) isContr-π* .fst = β’ isContr-π* .snd _ = refl isOfHLevel-π* : β n β isOfHLevel n (π* {β}) isOfHLevel-π* n = isContrβisOfHLevel n isContr-π* isProp-π* : isProp (π* {β}) isProp-π* = isOfHLevel-π* 1 isSet-π* : isSet (π* {β}) isSet-π* = isOfHLevel-π* 2 π*-unit-Γ-left-equiv : (π* {β} Γ A) β A π*-unit-Γ-left-equiv = strictEquiv (Ξ» { (β’ , a) β a }) (Ξ» a β (β’ , a)) isContrββ‘π* : isContr A β A β‘ π* isContrββ‘π* contr-A = ua $ (const β’) , is-equiv-const where is-equiv-const : isEquiv (Ξ» _ β β’) is-equiv-const .equiv-proof β’ .fst = contr-A .fst , refl is-equiv-const .equiv-proof β’ .snd (a , p) = Ξ£PathP (contr-A .snd a , Ξ» i j β β’)