Derivatives for Containers in Univalent Foundations
Cubical.HITs.SetTruncation.Base
Initializing search
    phijor/derivatives
    • Overview
    • Library
    phijor/derivatives
    • Overview
      • Derivative.Bag
      • Derivative.Adjunction
      • Derivative.Basics.Sum
      • Derivative.Basics.Unit
      • Derivative.Basics.W
      • Derivative.Basics.Decidable
      • Derivative.Basics.Embedding
      • Derivative.Basics.Equiv
      • Derivative.Basics.Maybe
      • Derivative.Basics.Sigma
      • Derivative.Category
      • Derivative.ChainRule
      • Derivative.Container
      • Derivative.Derivative
      • Derivative.Indexed.Mu
      • Derivative.Indexed.ChainRule
      • Derivative.Indexed.Container
      • Derivative.Indexed.Derivative
      • Derivative.Indexed.MuRule
      • Derivative.Indexed.Univalence
      • Derivative.Isolated.Base
      • Derivative.Isolated
      • Derivative.Isolated.S1
      • Derivative.Isolated.Sum
      • Derivative.Isolated.W
      • Derivative.Isolated.DependentGrafting
      • Derivative.Isolated.Grafting
      • Derivative.Isolated.Maybe
      • Derivative.Isolated.Sigma
      • Derivative.Prelude
      • Derivative.Properties
      • Derivative.Remove

    Cubical.HITs.SetTruncation.Base

    {-
    
    This file contains:
    
    - Definition of set truncations
    
    -}
    module Cubical.HITs.SetTruncation.Base where
    
    open import Cubical.Core.Primitives
    open import Cubical.Foundations.Pointed
    
    -- set truncation as a higher inductive type:
    
    data ∥_∥₂ {ℓ} (A : Type ℓ) : Type ℓ where
      ∣_∣₂ : A → ∥ A ∥₂
      squash₂ : ∀ (x y : ∥ A ∥₂) (p q : x ≡ y) → p ≡ q
    
    -- Pointed version
    ∥_∥₂∙ : ∀ {ℓ} (A : Pointed ℓ) → Pointed ℓ
    fst ∥ A ∥₂∙ = ∥ fst A ∥₂
    snd ∥ A ∥₂∙ = ∣ pt A ∣₂
    
    Made with Material for MkDocs