Derivatives for Containers in Univalent Foundations
Cubical.HITs.S3.Base
Initializing search
    phijor/derivatives
    • Overview
    • Library
    phijor/derivatives
    • Overview
      • Derivative.Bag
      • Derivative.Adjunction
      • Derivative.Basics.Sum
      • Derivative.Basics.Unit
      • Derivative.Basics.W
      • Derivative.Basics.Decidable
      • Derivative.Basics.Embedding
      • Derivative.Basics.Equiv
      • Derivative.Basics.Maybe
      • Derivative.Basics.Sigma
      • Derivative.Category
      • Derivative.ChainRule
      • Derivative.Container
      • Derivative.Derivative
      • Derivative.Indexed.Mu
      • Derivative.Indexed.ChainRule
      • Derivative.Indexed.Container
      • Derivative.Indexed.Derivative
      • Derivative.Indexed.MuRule
      • Derivative.Indexed.Univalence
      • Derivative.Isolated.Base
      • Derivative.Isolated
      • Derivative.Isolated.S1
      • Derivative.Isolated.Sum
      • Derivative.Isolated.W
      • Derivative.Isolated.DependentGrafting
      • Derivative.Isolated.Grafting
      • Derivative.Isolated.Maybe
      • Derivative.Isolated.Sigma
      • Derivative.Prelude
      • Derivative.Properties
      • Derivative.Remove

    Cubical.HITs.S3.Base

    module Cubical.HITs.S3.Base where
    
    open import Cubical.Foundations.Prelude
    open import Cubical.Foundations.Isomorphism
    open Iso
    
    data S³ : Type₀ where
      base : S³
      surf : PathP (λ j → PathP (λ i → base ≡ base) refl refl) refl refl
    
    flip₀₂S³ : S³ → S³
    flip₀₂S³ base = base
    flip₀₂S³ (surf j i i₁) = surf i₁ i j
    
    flip₀₂S³Id : (x : S³) → flip₀₂S³ (flip₀₂S³ x) ≡ x
    flip₀₂S³Id base = refl
    flip₀₂S³Id (surf j i i₁) = refl
    
    flip₀₂S³Iso : Iso S³ S³
    fun flip₀₂S³Iso = flip₀₂S³
    inv flip₀₂S³Iso = flip₀₂S³
    rightInv flip₀₂S³Iso = flip₀₂S³Id
    leftInv flip₀₂S³Iso = flip₀₂S³Id
    
    Made with Material for MkDocs