Derivatives for Containers in Univalent Foundations
Cubical.Functions.Implicit
Initializing search
    phijor/derivatives
    • Overview
    • Library
    phijor/derivatives
    • Overview
      • Derivative.Bag
      • Derivative.Adjunction
      • Derivative.Basics.Sum
      • Derivative.Basics.Unit
      • Derivative.Basics.W
      • Derivative.Basics.Decidable
      • Derivative.Basics.Embedding
      • Derivative.Basics.Equiv
      • Derivative.Basics.Maybe
      • Derivative.Basics.Sigma
      • Derivative.Category
      • Derivative.ChainRule
      • Derivative.Container
      • Derivative.Derivative
      • Derivative.Indexed.Mu
      • Derivative.Indexed.ChainRule
      • Derivative.Indexed.Container
      • Derivative.Indexed.Derivative
      • Derivative.Indexed.MuRule
      • Derivative.Indexed.Univalence
      • Derivative.Isolated.Base
      • Derivative.Isolated
      • Derivative.Isolated.S1
      • Derivative.Isolated.Sum
      • Derivative.Isolated.W
      • Derivative.Isolated.DependentGrafting
      • Derivative.Isolated.Grafting
      • Derivative.Isolated.Maybe
      • Derivative.Isolated.Sigma
      • Derivative.Prelude
      • Derivative.Properties
      • Derivative.Remove

    Cubical.Functions.Implicit

    module Cubical.Functions.Implicit where
    
    open import Cubical.Foundations.Prelude
    open import Cubical.Foundations.Equiv
    open import Cubical.Foundations.Isomorphism
    
    implicit≃Explicit : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'}
      → ({a : A} → B a) ≃ ((a : A) → B a)
    implicit≃Explicit = isoToEquiv isom
      where
      isom : Iso _ _
      Iso.fun isom f a = f
      Iso.inv isom f = f _
      Iso.rightInv isom f = funExt λ _ → refl
      Iso.leftInv isom f = implicitFunExt refl
    
    
    Made with Material for MkDocs