Derivatives for Containers in Univalent Foundations
Cubical.Displayed.Constant
Initializing search
    phijor/derivatives
    • Overview
    • Library
    phijor/derivatives
    • Overview
      • Derivative.Bag
      • Derivative.Adjunction
      • Derivative.Basics.Sum
      • Derivative.Basics.Unit
      • Derivative.Basics.W
      • Derivative.Basics.Decidable
      • Derivative.Basics.Embedding
      • Derivative.Basics.Equiv
      • Derivative.Basics.Maybe
      • Derivative.Basics.Sigma
      • Derivative.Category
      • Derivative.ChainRule
      • Derivative.Container
      • Derivative.Derivative
      • Derivative.Indexed.Mu
      • Derivative.Indexed.ChainRule
      • Derivative.Indexed.Container
      • Derivative.Indexed.Derivative
      • Derivative.Indexed.MuRule
      • Derivative.Indexed.Univalence
      • Derivative.Isolated.Base
      • Derivative.Isolated
      • Derivative.Isolated.S1
      • Derivative.Isolated.Sum
      • Derivative.Isolated.W
      • Derivative.Isolated.DependentGrafting
      • Derivative.Isolated.Grafting
      • Derivative.Isolated.Maybe
      • Derivative.Isolated.Sigma
      • Derivative.Prelude
      • Derivative.Properties
      • Derivative.Remove

    Cubical.Displayed.Constant

    {-
    
      Functions building DUARels on constant families
    
    -}
    module Cubical.Displayed.Constant where
    
    open import Cubical.Foundations.Prelude
    open import Cubical.Foundations.Equiv
    
    open import Cubical.Displayed.Base
    open import Cubical.Displayed.Subst
    
    private
      variable
        ℓ ℓA ℓA' ℓP ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓ≅B' ℓC ℓ≅C : Level
    
    -- constant DUARel
    
    module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A)
      {B : Type ℓB} (𝒮-B : UARel B ℓ≅B)  where
    
      open UARel 𝒮-B
      open DUARel
    
      𝒮ᴰ-const : DUARel 𝒮-A (λ _ → B) ℓ≅B
      𝒮ᴰ-const ._≅ᴰ⟨_⟩_ b _ b' = b ≅ b'
      𝒮ᴰ-const .uaᴰ b p b' = ua b b'
    
    -- SubstRel for an arbitrary constant family
    
    module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) (B : Type ℓB) where
    
      open SubstRel
    
      𝒮ˢ-const : SubstRel 𝒮-A (λ _ → B)
      𝒮ˢ-const .SubstRel.act _ = idEquiv B
      𝒮ˢ-const .SubstRel.uaˢ p b = transportRefl b
    
    Made with Material for MkDocs