Derivatives for Containers in Univalent Foundations
Cubical.Data.Fin.Literals
Initializing search
    phijor/derivatives
    • Overview
    • Library
    phijor/derivatives
    • Overview
      • Derivative.Bag
      • Derivative.Adjunction
      • Derivative.Basics.Sum
      • Derivative.Basics.Unit
      • Derivative.Basics.W
      • Derivative.Basics.Decidable
      • Derivative.Basics.Embedding
      • Derivative.Basics.Equiv
      • Derivative.Basics.Maybe
      • Derivative.Basics.Sigma
      • Derivative.Category
      • Derivative.ChainRule
      • Derivative.Container
      • Derivative.Derivative
      • Derivative.Indexed.Mu
      • Derivative.Indexed.ChainRule
      • Derivative.Indexed.Container
      • Derivative.Indexed.Derivative
      • Derivative.Indexed.MuRule
      • Derivative.Indexed.Univalence
      • Derivative.Isolated.Base
      • Derivative.Isolated
      • Derivative.Isolated.S1
      • Derivative.Isolated.Sum
      • Derivative.Isolated.W
      • Derivative.Isolated.DependentGrafting
      • Derivative.Isolated.Grafting
      • Derivative.Isolated.Maybe
      • Derivative.Isolated.Sigma
      • Derivative.Prelude
      • Derivative.Properties
      • Derivative.Remove

    Cubical.Data.Fin.Literals

    {-# OPTIONS --no-exact-split #-}
    module Cubical.Data.Fin.Literals where
    
    open import Agda.Builtin.Nat
      using (suc)
    open import Agda.Builtin.FromNat
      renaming (Number to HasFromNat)
    open import Cubical.Data.Fin.Base
      using (Fin; fromℕ≤)
    open import Cubical.Data.Nat.Order.Recursive
      using (_≤_)
    
    instance
      fromNatFin : {n : _} → HasFromNat (Fin (suc n))
      fromNatFin {n} = record
        { Constraint = λ m → m ≤ n
        ; fromNat    = λ m ⦃ m≤n ⦄ → fromℕ≤ m n m≤n
        }
    
    Made with Material for MkDocs