Derivatives for Containers in Univalent Foundations
Cubical.Data.Empty.Base
Initializing search
    phijor/derivatives
    • Overview
    • Library
    phijor/derivatives
    • Overview
      • Derivative.Bag
      • Derivative.Adjunction
      • Derivative.Basics.Sum
      • Derivative.Basics.Unit
      • Derivative.Basics.W
      • Derivative.Basics.Decidable
      • Derivative.Basics.Embedding
      • Derivative.Basics.Equiv
      • Derivative.Basics.Maybe
      • Derivative.Basics.Sigma
      • Derivative.Category
      • Derivative.ChainRule
      • Derivative.Container
      • Derivative.Derivative
      • Derivative.Indexed.Mu
      • Derivative.Indexed.ChainRule
      • Derivative.Indexed.Container
      • Derivative.Indexed.Derivative
      • Derivative.Indexed.MuRule
      • Derivative.Indexed.Univalence
      • Derivative.Isolated.Base
      • Derivative.Isolated
      • Derivative.Isolated.S1
      • Derivative.Isolated.Sum
      • Derivative.Isolated.W
      • Derivative.Isolated.DependentGrafting
      • Derivative.Isolated.Grafting
      • Derivative.Isolated.Maybe
      • Derivative.Isolated.Sigma
      • Derivative.Prelude
      • Derivative.Properties
      • Derivative.Remove

    Cubical.Data.Empty.Base

    module Cubical.Data.Empty.Base where
    
    open import Cubical.Foundations.Prelude
    
    private
      variable
        ℓ ℓ' : Level
    
    data ⊥ : Type₀ where
    
    ⊥* : Type ℓ
    ⊥* = Lift ⊥
    
    rec : {A : Type ℓ} → ⊥ → A
    rec ()
    
    rec* : {A : Type ℓ} → ⊥* {ℓ = ℓ'} → A
    rec* ()
    
    elim : {A : ⊥ → Type ℓ} → (x : ⊥) → A x
    elim ()
    
    elim* : {A : ⊥* {ℓ'} → Type ℓ} → (x : ⊥* {ℓ'}) → A x
    elim* ()
    
    Made with Material for MkDocs