Derivatives for Containers in Univalent Foundations
Cubical.Categories.Functors.Constant
Initializing search
    phijor/derivatives
    • Overview
    • Library
    phijor/derivatives
    • Overview
      • Derivative.Bag
      • Derivative.Adjunction
      • Derivative.Basics.Sum
      • Derivative.Basics.Unit
      • Derivative.Basics.W
      • Derivative.Basics.Decidable
      • Derivative.Basics.Embedding
      • Derivative.Basics.Equiv
      • Derivative.Basics.Maybe
      • Derivative.Basics.Sigma
      • Derivative.Category
      • Derivative.ChainRule
      • Derivative.Container
      • Derivative.Derivative
      • Derivative.Indexed.Mu
      • Derivative.Indexed.ChainRule
      • Derivative.Indexed.Container
      • Derivative.Indexed.Derivative
      • Derivative.Indexed.MuRule
      • Derivative.Indexed.Univalence
      • Derivative.Isolated.Base
      • Derivative.Isolated
      • Derivative.Isolated.S1
      • Derivative.Isolated.Sum
      • Derivative.Isolated.W
      • Derivative.Isolated.DependentGrafting
      • Derivative.Isolated.Grafting
      • Derivative.Isolated.Maybe
      • Derivative.Isolated.Sigma
      • Derivative.Prelude
      • Derivative.Properties
      • Derivative.Remove

    Cubical.Categories.Functors.Constant

    module Cubical.Categories.Functors.Constant where
    
    open import Cubical.Foundations.Prelude
    open import Cubical.Categories.Category
    open import Cubical.Categories.Functor.Base
    
    private
      variable
        ℓC ℓC' ℓD ℓD' : Level
    
    open Category
    open Functor
    
    Constant : (C : Category ℓC ℓC') (D : Category ℓD ℓD') (d : ob D) → Functor C D
    F-ob (Constant C D d) c = d
    F-hom (Constant C D d) φ = id D
    F-id (Constant C D d) = refl
    F-seq (Constant C D d) φ χ = sym (⋆IdR D _)
    
    Made with Material for MkDocs