Derivatives for Containers in Univalent Foundations
Cubical.Categories.Commutativity
Initializing search
    phijor/derivatives
    • Overview
    • Library
    phijor/derivatives
    • Overview
      • Derivative.Bag
      • Derivative.Adjunction
      • Derivative.Basics.Sum
      • Derivative.Basics.Unit
      • Derivative.Basics.W
      • Derivative.Basics.Decidable
      • Derivative.Basics.Embedding
      • Derivative.Basics.Equiv
      • Derivative.Basics.Maybe
      • Derivative.Basics.Sigma
      • Derivative.Category
      • Derivative.ChainRule
      • Derivative.Container
      • Derivative.Derivative
      • Derivative.Indexed.Mu
      • Derivative.Indexed.ChainRule
      • Derivative.Indexed.Container
      • Derivative.Indexed.Derivative
      • Derivative.Indexed.MuRule
      • Derivative.Indexed.Univalence
      • Derivative.Isolated.Base
      • Derivative.Isolated
      • Derivative.Isolated.S1
      • Derivative.Isolated.Sum
      • Derivative.Isolated.W
      • Derivative.Isolated.DependentGrafting
      • Derivative.Isolated.Grafting
      • Derivative.Isolated.Maybe
      • Derivative.Isolated.Sigma
      • Derivative.Prelude
      • Derivative.Properties
      • Derivative.Remove

    Cubical.Categories.Commutativity

    module Cubical.Categories.Commutativity where
    
    open import Cubical.Foundations.Prelude
    open import Cubical.Categories.Category
    
    private
      variable
        ℓ ℓ' : Level
    
    module _ {C : Category ℓ ℓ'} where
      open Category C
    
      compSq : ∀ {x y z w u v} {f : C [ x , y ]} {g h} {k : C [ z , w ]} {l} {m} {n : C [ u , v ]}
           -- square 1
           → f ⋆ g ≡ h ⋆ k
           -- square 2 (sharing g)
           → k ⋆ l ≡ m ⋆ n
           → f ⋆ (g ⋆ l) ≡ (h ⋆ m) ⋆ n
      compSq {f = f} {g} {h} {k} {l} {m} {n} p q
        = f ⋆ (g ⋆ l)
        ≡⟨ sym (⋆Assoc _ _ _) ⟩
          (f ⋆ g) ⋆ l
        ≡⟨ cong (_⋆ l) p ⟩
          (h ⋆ k) ⋆ l
        ≡⟨ ⋆Assoc _ _ _ ⟩
          h ⋆ (k ⋆ l)
        ≡⟨ cong (h ⋆_) q ⟩
          h ⋆ (m ⋆ n)
        ≡⟨ sym (⋆Assoc _ _ _) ⟩
          (h ⋆ m) ⋆ n
        ∎
    
    Made with Material for MkDocs