Derivatives for Containers in Univalent Foundations
Agda.Builtin.Cubical.Sub
Initializing search
    phijor/derivatives
    • Overview
    • Library
    phijor/derivatives
    • Overview
      • Derivative.Bag
      • Derivative.Adjunction
      • Derivative.Basics.Sum
      • Derivative.Basics.Unit
      • Derivative.Basics.W
      • Derivative.Basics.Decidable
      • Derivative.Basics.Embedding
      • Derivative.Basics.Equiv
      • Derivative.Basics.Maybe
      • Derivative.Basics.Sigma
      • Derivative.Category
      • Derivative.ChainRule
      • Derivative.Container
      • Derivative.Derivative
      • Derivative.Indexed.Mu
      • Derivative.Indexed.ChainRule
      • Derivative.Indexed.Container
      • Derivative.Indexed.Derivative
      • Derivative.Indexed.MuRule
      • Derivative.Indexed.Univalence
      • Derivative.Isolated.Base
      • Derivative.Isolated
      • Derivative.Isolated.S1
      • Derivative.Isolated.Sum
      • Derivative.Isolated.W
      • Derivative.Isolated.DependentGrafting
      • Derivative.Isolated.Grafting
      • Derivative.Isolated.Maybe
      • Derivative.Isolated.Sigma
      • Derivative.Prelude
      • Derivative.Properties
      • Derivative.Remove

    Agda.Builtin.Cubical.Sub

    {-# OPTIONS --erased-cubical --safe --no-sized-types --no-guardedness #-}
    
    module Agda.Builtin.Cubical.Sub where
    
      open import Agda.Primitive.Cubical
    
      {-# BUILTIN SUB Sub #-}
    
      postulate
        inS : ∀ {ℓ} {A : Set ℓ} {φ} (x : A) → Sub A φ (λ _ → x)
    
      {-# BUILTIN SUBIN inS #-}
    
      -- Sub A φ u is treated as A.
      {-# COMPILE JS inS = _ => _ => _ => x => x #-}
    
      primitive
        primSubOut : ∀ {ℓ} {A : Set ℓ} {φ : I} {u : Partial φ A} → Sub _ φ u → A
    
    Made with Material for MkDocs