Derivatives for Containers in Univalent Foundations
Agda.Builtin.Cubical.Glue
Initializing search
    phijor/derivatives
    • Overview
    • Library
    phijor/derivatives
    • Overview
      • Derivative.Bag
      • Derivative.Adjunction
      • Derivative.Basics.Sum
      • Derivative.Basics.Unit
      • Derivative.Basics.W
      • Derivative.Basics.Decidable
      • Derivative.Basics.Embedding
      • Derivative.Basics.Equiv
      • Derivative.Basics.Maybe
      • Derivative.Basics.Sigma
      • Derivative.Category
      • Derivative.ChainRule
      • Derivative.Container
      • Derivative.Derivative
      • Derivative.Indexed.Mu
      • Derivative.Indexed.ChainRule
      • Derivative.Indexed.Container
      • Derivative.Indexed.Derivative
      • Derivative.Indexed.MuRule
      • Derivative.Indexed.Univalence
      • Derivative.Isolated.Base
      • Derivative.Isolated
      • Derivative.Isolated.S1
      • Derivative.Isolated.Sum
      • Derivative.Isolated.W
      • Derivative.Isolated.DependentGrafting
      • Derivative.Isolated.Grafting
      • Derivative.Isolated.Maybe
      • Derivative.Isolated.Sigma
      • Derivative.Prelude
      • Derivative.Properties
      • Derivative.Remove

    Agda.Builtin.Cubical.Glue

    {-# OPTIONS --cubical --safe --no-sized-types --no-guardedness #-}
    
    module Agda.Builtin.Cubical.Glue where
    
    open import Agda.Primitive
    open import Agda.Primitive.Cubical
    open import Agda.Builtin.Cubical.Equiv public
    
    primitive
        primGlue    : ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I}
          → (T : Partial φ (Set ℓ')) → (e : PartialP φ (λ o → T o ≃ A))
          → Set ℓ'
        prim^glue   : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I}
          → {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)}
          → (t : PartialP φ T) → (a : A) → primGlue A T e
        prim^unglue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I}
          → {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)}
          → primGlue A T e → A
    
    Made with Material for MkDocs