module GpdCont.PropositionalTruncation where open import GpdCont.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.HITs.PropositionalTruncation as PT using (∥_∥₁) private variable ℓ : Level A B : Type ℓ propTruncIso : Iso A B → Iso ∥ A ∥₁ ∥ B ∥₁ propTruncIso is = ∥is∥ where open Iso ∥is∥ : Iso _ _ ∥is∥ .fun = PT.map (is .fun) ∥is∥ .inv = PT.map (is .inv) ∥is∥ .rightInv _ = PT.isPropPropTrunc _ _ ∥is∥ .leftInv _ = PT.isPropPropTrunc _ _