module GpdCont.PropositionalTruncation where
open import GpdCont.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.HITs.PropositionalTruncation as PT using (∥_∥₁)
private
variable
ℓ : Level
A B : Type ℓ
propTruncIso : Iso A B → Iso ∥ A ∥₁ ∥ B ∥₁
propTruncIso is = ∥is∥ where
open Iso
∥is∥ : Iso _ _
∥is∥ .fun = PT.map (is .fun)
∥is∥ .inv = PT.map (is .inv)
∥is∥ .rightInv _ = PT.isPropPropTrunc _ _
∥is∥ .leftInv _ = PT.isPropPropTrunc _ _