module GpdCont.Group.DeloopingCategory where open import GpdCont.Prelude open import GpdCont.Categories.DisplayedOverContr using (∫ᶜ) open import Cubical.Algebra.Group open import Cubical.Data.Unit.Properties using (isContrUnit) open import Cubical.Categories.Category.Base open import Cubical.Categories.Displayed.Base module _ {ℓ} (G : Group ℓ) where private open module G = GroupStr (str G) using (_·_) DeloopingCategory : Category _ _ DeloopingCategory .Category.ob = Unit DeloopingCategory .Category.Hom[_,_] _ _ = ⟨ G ⟩ DeloopingCategory .Category.id = G.1g DeloopingCategory .Category._⋆_ = G._·_ DeloopingCategory .Category.⋆IdL = G.·IdL DeloopingCategory .Category.⋆IdR = G.·IdR DeloopingCategory .Category.⋆Assoc f g h = sym $ G.·Assoc f g h DeloopingCategory .Category.isSetHom = G.is-set ∫DeloopingCategory : ∀ {ℓo ℓh} → (D : Categoryᴰ DeloopingCategory ℓo ℓh) → Category ℓo (ℓ-max ℓ ℓh) ∫DeloopingCategory D = ∫ᶜ DeloopingCategory D isContrUnit