open import GpdCont.Prelude hiding (_×_)

open import Cubical.Categories.Category.Base

module GpdCont.Categories.Products {ℓo ℓh} (C : Category ℓo ℓh) ( : Level) where

open import GpdCont.HomotopySet as HSet
import      GpdCont.Categories.Diagonal as Diagonal

open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Adjoint.UniversalElements
open import Cubical.Categories.Presheaf.Representable using (UniversalElement) public

private
  module C where
    open Category C public
    open Diagonal C  public


Product : (K : hSet )  (c :  K   C.ob)  Type _
Product K = RightAdjointAt' _ _ (C.Δ K)

Products : Type _
Products =  K  RightAdjoint' _ _ (C.Δ K)

module NotationAt (K : hSet ) (c :  K   C.ob) (ip : Product K c) where
  open UniversalElement ip

  Π : C.ob
  Π = vertex

  π : (k :  K )  C.Hom[ Π , c k ]
  π = element

  module _ (x : C.ob) where
    is-universal : isEquiv  f k  f C.⋆ π k)
    is-universal = universal x

    univ-equiv : C.Hom[ x , Π ]  (∀ k  C.Hom[ x , c k ])
    univ-equiv = _ , is-universal

    univ-iso : Iso C.Hom[ x , Π ] (∀ k  C.Hom[ x , c k ])
    univ-iso = equivToIso univ-equiv

module Notation (ip : Products) where
  open import Cubical.Data.Bool

  module _ K (c :  K   C.ob) where open NotationAt K c (ip K c) public

  terminal : C.ob
  terminal = Π (EmptySet ) λ ()

  _×_ : C.ob  C.ob  C.ob
  _×_ x y = Π (Bool* , isOfHLevelLift 2 isSetBool)  { b  if b .lower then x else y })