open import GpdCont.Prelude
open import Cubical.Categories.Category.Base
module GpdCont.Categories.Coproducts {ℓo ℓh} (C : Category ℓo ℓh) (ℓ : Level) where
open import GpdCont.HomotopySet as HSet
import GpdCont.Categories.Diagonal as Diagonal
open import GpdCont.Categories.LeftAdjoint using (LeftAdjointAt' ; LeftAdjoint')
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Adjoint.UniversalElements
open import Cubical.Categories.Presheaf.Representable using (UniversalElement) public
private
module C where
open Category C public
open Diagonal C ℓ public
Coproduct : (K : hSet ℓ) → (c : ⟨ K ⟩ → C.ob) → Type _
Coproduct K = LeftAdjointAt' _ _ (C.Δ K)
Coproducts : Type _
Coproducts = ∀ K → LeftAdjoint' _ _ (C.Δ K)
module NotationAt (K : hSet ℓ) (c : ⟨ K ⟩ → C.ob) (p : Coproduct K c) where
open UniversalElement p
⨆ : C.ob
⨆ = vertex
ι = element
module _ (y : C.ob) where
is-universal : isEquiv (λ f k → ι k C.⋆ f)
is-universal = universal y
univ-equiv : C.Hom[ ⨆ , y ] ≃ (∀ k → C.Hom[ c k , y ])
univ-equiv = _ , is-universal
univ-iso : Iso C.Hom[ ⨆ , y ] (∀ k → C.Hom[ c k , y ])
univ-iso = equivToIso univ-equiv
module Notation (p : Coproducts) where
open import Cubical.Data.Bool
module _ K (c : ⟨ K ⟩ → C.ob) where open NotationAt K c (p K c) public
initial : C.ob
initial = ⨆ (EmptySet ℓ) λ ()
_⊔_ : C.ob → C.ob → C.ob
_⊔_ x y = ⨆ (Bool* , isOfHLevelLift 2 isSetBool) (λ { b → if b .lower then x else y })