{-# OPTIONS --safe #-}
module Cubical.Data.Sigma.More where
open import Cubical.Data.Sigma.Base
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Path
open import Cubical.Foundations.Transport
open import Cubical.Data.Sigma
open Iso
private
variable
ℓ ℓ' ℓ'' : Level
A A' : Type ℓ
B B' : (a : A) → Type ℓ
C : (a : A) (b : B a) → Type ℓ
change-contractum : (p : ∃![ x₀ ∈ A ] B x₀) → singl (p .fst .fst)
→ ∃![ x ∈ A ] B x
change-contractum {B = B} ((x₀ , p₀) , contr) (x , x₀≡x) =
(x , subst B x₀≡x p₀)
, (λ yq → ΣPathP ((sym x₀≡x) , symP (subst-filler B x₀≡x p₀)) ∙ contr yq)