{-# OPTIONS --safe #-}
module Cubical.Data.Fin.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Functions.Embedding
open import Cubical.Functions.Surjection
open import Cubical.HITs.PropositionalTruncation renaming (rec to ∥∥rec)
open import Cubical.Data.Fin.Base as Fin
open import Cubical.Data.Nat
open import Cubical.Data.Nat.Order
open import Cubical.Data.Empty as Empty
open import Cubical.Data.Unit
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Data.FinData.Base renaming (Fin to FinData) hiding (¬Fin0 ; toℕ)
open import Cubical.Relation.Nullary
open import Cubical.Induction.WellFounded
open import Cubical.Algebra.AbGroup.Base
private
 variable
   a b ℓ : Level
   n : ℕ
   A : Type a
isPropFin0 : isProp (Fin 0)
isPropFin0 = Empty.rec ∘ ¬Fin0
isContrFin1 : isContr (Fin 1)
isContrFin1
  = fzero , λ
  { (zero , _) → toℕ-injective refl
  ; (suc k , sk<1) → Empty.rec (¬-<-zero (pred-≤-pred sk<1))
  }
Unit≃Fin1 : Unit ≃ Fin 1
Unit≃Fin1 =
  isoToEquiv
    (iso
      (const fzero)
      (const tt)
      (isContrFin1 .snd)
      (isContrUnit .snd)
    )
isSetFin : ∀{k} → isSet (Fin k)
isSetFin {k} = isSetΣ isSetℕ (λ _ → isProp→isSet isProp≤)
discreteFin : ∀ {n} → Discrete (Fin n)
discreteFin {n} (x , hx) (y , hy) with discreteℕ x y
... | yes prf = yes (Σ≡Prop (λ _ → isProp≤) prf)
... | no prf = no λ h → prf (cong fst h)
inject<-ne : ∀ {n} (i : Fin n) → ¬ inject< ≤-refl i ≡ (n , ≤-refl)
inject<-ne {n} (k , k<n) p = <→≢ k<n (cong fst p)
Fin-fst-≡ : ∀ {n} {i j : Fin n} → fst i ≡ fst j → i ≡ j
Fin-fst-≡ = Σ≡Prop (λ _ → isProp≤)
private
  subst-app : (B : A → Type b) (f : (x : A) → B x) {x y : A} (x≡y : x ≡ y) →
              subst B x≡y (f x) ≡ f y
  subst-app B f {x = x} =
    J (λ y e → subst B e (f x) ≡ f y) (substRefl {B = B} (f x))
module _ (P : ∀ {k} → Fin k → Type ℓ)
         (fz : ∀ {k} → P {suc k} fzero)
         (fs : ∀ {k} {fn : Fin k} → P fn → P (fsuc fn))
         {k : ℕ} where
  elim-fzero : Fin.elim P fz fs {k = suc k} fzero ≡ fz
  elim-fzero =
    subst P (toℕ-injective _) fz ≡⟨ cong (λ p → subst P p fz) (isSetFin _ _ _ _) ⟩
    subst P refl fz              ≡⟨ substRefl {B = P} fz ⟩
    fz                           ∎
  elim-fsuc : (fk : Fin k) → Fin.elim P fz fs (fsuc fk) ≡ fs (Fin.elim P fz fs fk)
  elim-fsuc fk =
    subst P (toℕ-injective (λ _ → toℕ (fsuc fk′))) (fs (Fin.elim P fz fs fk′))
      ≡⟨ cong (λ p → subst P p (fs (Fin.elim P fz fs fk′)) ) (isSetFin _ _ _ _) ⟩
    subst P (cong fsuc fk′≡fk) (fs (Fin.elim P fz fs fk′))
      ≡⟨ subst-app _ (λ fj → fs (Fin.elim P fz fs fj)) fk′≡fk ⟩
    fs (Fin.elim P fz fs fk)
      ∎
    where
    fk′ = fst fk , pred-≤-pred (snd (fsuc fk))
    fk′≡fk : fk′ ≡ fk
    fk′≡fk = toℕ-injective refl
expand : ℕ → ℕ → ℕ → ℕ
expand 0 k m = m
expand (suc o) k m = k + expand o k m
expand≡ : ∀ k m o → expand o k m ≡ o · k + m
expand≡ k m zero = refl
expand≡ k m (suc o)
  = cong (k +_) (expand≡ k m o) ∙ +-assoc k (o · k) m
expand× : ∀{k} → (Fin k × ℕ) → ℕ
expand× {k} (f , o) = expand o k (toℕ f)
private
  lemma₀ : ∀{k m n r} → r ≡ n → k + m ≡ n → k ≤ r
  lemma₀ {k = k} {m} p q = m , +-comm m k ∙ q ∙ sym p
  expand×Inj : ∀ k → {t1 t2 : Fin (suc k) × ℕ} → expand× t1 ≡ expand× t2 → t1 ≡ t2
  expand×Inj k {f1 , zero} {f2 , zero} p i
    = toℕ-injective {fj = f1} {f2} p i , zero
  expand×Inj k {f1 , suc o1} {(r , r<sk) , zero} p
    = Empty.rec (<-asym r<sk (lemma₀ refl p))
  expand×Inj k {(r , r<sk) , zero} {f2 , suc o2} p
    = Empty.rec (<-asym r<sk (lemma₀ refl (sym p)))
  expand×Inj k {f1 , suc o1} {f2 , suc o2}
    = cong (λ { (f , o) → (f , suc o) })
    ∘ expand×Inj k {f1 , o1} {f2 , o2}
    ∘ inj-m+ {suc k}
  expand×Emb : ∀ k → isEmbedding (expand× {k})
  expand×Emb 0 = Empty.rec ∘ ¬Fin0 ∘ fst
  expand×Emb (suc k)
    = injEmbedding isSetℕ (expand×Inj k)
Residue : ℕ → ℕ → Type₀
Residue k n = Σ[ tup ∈ Fin k × ℕ ] expand× tup ≡ n
isPropResidue : ∀ k n → isProp (Residue k n)
isPropResidue k = isEmbedding→hasPropFibers (expand×Emb k)
Fin→Residue : ∀{k} → (f : Fin k) → Residue k (toℕ f)
Fin→Residue f = (f , 0) , refl
Residue+k : (k n : ℕ) → Residue k n → Residue k (k + n)
Residue+k k n ((f , o) , p) = (f , suc o) , cong (k +_) p
Residue-k : (k n : ℕ) → Residue k (k + n) → Residue k n
Residue-k k n (((r , r<k) , zero) , p) = Empty.rec (<-asym r<k (lemma₀ p refl))
Residue-k k n ((f , suc o) , p) = ((f , o) , inj-m+ p)
Residue+k-k
  : (k n : ℕ)
  → (R : Residue k (k + n))
  → Residue+k k n (Residue-k k n R) ≡ R
Residue+k-k k n (((r , r<k) , zero) , p) = Empty.rec (<-asym r<k (lemma₀ p refl))
Residue+k-k k n ((f , suc o) , p)
  = Σ≡Prop (λ tup → isSetℕ (expand× tup) (k + n)) refl
Residue-k+k
  : (k n : ℕ)
  → (R : Residue k n)
  → Residue-k k n (Residue+k k n R) ≡ R
Residue-k+k k n ((f , o) , p)
  = Σ≡Prop (λ tup → isSetℕ (expand× tup) n) refl
private
  Residue≃ : ∀ k n → Residue k n ≃ Residue k (k + n)
  Residue≃ k n
    = Residue+k k n
    , isoToIsEquiv (iso (Residue+k k n) (Residue-k k n)
                        (Residue+k-k k n) (Residue-k+k k n))
Residue≡ : ∀ k n → Residue k n ≡ Residue k (k + n)
Residue≡ k n = ua (Residue≃ k n)
module Reduce (k₀ : ℕ) where
  k : ℕ
  k = suc k₀
  base : ∀ n (n<k : n < k) → Residue k n
  base n n<k = Fin→Residue (n , n<k)
  step : ∀ n → Residue k n → Residue k (k + n)
  step n = transport (Residue≡ k n)
  reduce : ∀ n → Residue k n
  reduce = +induction k₀ (Residue k) base step
  reduce≡
    : ∀ n → transport (Residue≡ k n) (reduce n) ≡ reduce (k + n)
  reduce≡ n
    = sym (+inductionStep k₀ _ base step n)
  reduceP
    : ∀ n → PathP (λ i → Residue≡ k n i) (reduce n) (reduce (k + n))
  reduceP n = toPathP (reduce≡ n)
open Reduce using (reduce; reduce≡) public
extract : ∀{k n} → Residue k n → Fin k
extract = fst ∘ fst
private
  lemma₅
    : ∀ k n (R : Residue k n)
    →  extract R ≡ extract (transport (Residue≡ k n) R)
  lemma₅ k n = sym ∘ cong extract ∘ uaβ (Residue≃ k n)
extract≡ : ∀ k n → extract (reduce k n) ≡ extract (reduce k (suc k + n))
extract≡ k n
  = lemma₅ (suc k) n (reduce k n) ∙ cong extract (Reduce.reduce≡ k n)
isContrResidue : ∀{k n} → isContr (Residue (suc k) n)
isContrResidue {k} {n} = inhProp→isContr (reduce k n) (isPropResidue (suc k) n)
_%_ : ℕ → ℕ → ℕ
n % zero = n
n % (suc k) = toℕ (extract (reduce k n))
_/_ : ℕ → ℕ → ℕ
n / zero = zero
n / (suc k) = reduce k n .fst .snd
moddiv : ∀ n k → (n / k) · k + n % k ≡ n
moddiv n zero = refl
moddiv n (suc k) = sym (expand≡ _ _ (n / suc k)) ∙ reduce k n .snd
n%k≡n[modk] : ∀ n k → Σ[ o ∈ ℕ ] o · k + n % k ≡ n
n%k≡n[modk] n k = (n / k) , moddiv n k
n%sk<sk : (n k : ℕ) → (n % suc k) < suc k
n%sk<sk n k = extract (reduce k n) .snd
fznotfs : ∀ {m : ℕ} {k : Fin m} → ¬ fzero ≡ fsuc k
fznotfs {m} p = subst F p tt
  where
    F : Fin (suc m) → Type₀
    F (zero , _) = Unit
    F (suc _ , _) = ⊥
fsuc-inj : {fj fk : Fin n} → fsuc fj ≡ fsuc fk → fj ≡ fk
fsuc-inj = toℕ-injective ∘ injSuc ∘ cong toℕ
punchOut : ∀ {m} {i j : Fin (suc m)} → (¬ i ≡ j) → Fin m
punchOut {_} {i} {j} p with fsplit i | fsplit j
punchOut {_} {i} {j} p | inl prfi | inl prfj =
  Empty.elim (p (i ≡⟨ sym prfi ⟩ fzero ≡⟨ prfj ⟩ j ∎))
punchOut {_} {i} {j} p | inl prfi | inr (kj , prfj) =
  kj
punchOut {zero} {i} {j} p  | inr (ki , prfi) | inl prfj =
  Empty.elim (p (
    i ≡⟨ sym (isContrFin1 .snd i) ⟩
    c ≡⟨ isContrFin1 .snd j ⟩
    j ∎
  ))
  where c = isContrFin1 .fst
punchOut {suc _} {i} {j} p | inr (ki , prfi) | inl prfj =
  fzero
punchOut {zero} {i} {j} p | inr (ki , prfi) | inr (kj , prfj) =
  Empty.elim ((p (
    i ≡⟨ sym (isContrFin1 .snd i) ⟩
    c ≡⟨ isContrFin1 .snd j ⟩
    j ∎)
  ))
  where c = isContrFin1 .fst
punchOut {suc _} {i} {j} p | inr (ki , prfi) | inr (kj , prfj) =
  fsuc (punchOut {i = ki} {j = kj}
    (λ q → p (i ≡⟨ sym prfi ⟩ fsuc ki ≡⟨ cong fsuc q ⟩ fsuc kj ≡⟨ prfj ⟩ j ∎))
  )
punchOut-inj
  : ∀ {m} {i j k : Fin (suc m)} (i≢j : ¬ i ≡ j) (i≢k : ¬ i ≡ k)
  → punchOut i≢j ≡ punchOut i≢k → j ≡ k
punchOut-inj {_} {i} {j} {k} i≢j i≢k p with fsplit i | fsplit j | fsplit k
punchOut-inj {zero} {i} {j} {k} i≢j i≢k p | _ | _ | _ =
  Empty.elim (i≢j (i ≡⟨ sym (isContrFin1 .snd i) ⟩ c ≡⟨ isContrFin1 .snd j ⟩ j ∎))
    where c = isContrFin1 .fst
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inl prfi | inl prfj | _ =
  Empty.elim (i≢j (i ≡⟨ sym prfi ⟩ fzero ≡⟨ prfj ⟩ j ∎))
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inl prfi | _ | inl prfk =
  Empty.elim (i≢k (i ≡⟨ sym prfi ⟩ fzero ≡⟨ prfk ⟩ k ∎))
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inl prfi | inr (kj , prfj) | inr (kk , prfk) =
  j       ≡⟨ sym prfj ⟩
  fsuc kj ≡⟨ cong fsuc p ⟩
  fsuc kk ≡⟨ prfk ⟩
  k       ∎
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inl prfj | inl prfk =
  j     ≡⟨ sym prfj ⟩
  fzero ≡⟨ prfk ⟩
  k     ∎
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inr (kj , prfj) | inr (kk , prfk) =
  j ≡⟨ sym prfj ⟩
  fsuc kj ≡⟨ cong fsuc lemma4 ⟩
  fsuc kk ≡⟨ prfk ⟩
  k ∎
  where
    lemma1 = λ q → i≢j (i ≡⟨ sym prfi ⟩ fsuc ki ≡⟨ cong fsuc q ⟩ fsuc kj ≡⟨ prfj ⟩ j ∎)
    lemma2 = λ q → i≢k (i ≡⟨ sym prfi ⟩ fsuc ki ≡⟨ cong fsuc q ⟩ fsuc kk ≡⟨ prfk ⟩ k ∎)
    lemma3 = fsuc-inj p
    lemma4 = punchOut-inj lemma1 lemma2 lemma3
punchOut-inj {suc m} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inl prfj | inr (kk , prfk) =
  Empty.rec (fznotfs p)
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inr (kj , prfj) | inl prfk =
  Empty.rec (fznotfs (sym p))
pigeonhole-special
  : ∀ {n}
  → (f : Fin (suc n) → Fin n)
  → Σ[ i ∈ Fin (suc n) ] Σ[ j ∈ Fin (suc n) ] (¬ i ≡ j) × (f i ≡ f j)
pigeonhole-special {zero} f = Empty.rec (¬Fin0 (f fzero))
pigeonhole-special {suc n} f =
  proof (any?
    (λ (i : Fin (suc n)) →
      discreteFin (f (inject< ≤-refl i)) (f (suc n , ≤-refl))
    ))
  where
    proof
      : Dec (Σ (Fin (suc n)) (λ z → f (inject< ≤-refl z) ≡ f (suc n , ≤-refl)))
      → Σ[ i ∈ Fin (suc (suc n)) ] Σ[ j ∈ Fin (suc (suc n)) ] (¬ i ≡ j) × (f i ≡ f j)
    proof (yes (i , prf)) = inject< ≤-refl i , (suc n , ≤-refl) , inject<-ne i , prf
    proof (no h) =
      let
        g : Fin (suc n) → Fin n
        g k = punchOut
          {i = f (suc n , ≤-refl)}
          {j = f (inject< ≤-refl k)}
          (λ p → h (k , Fin-fst-≡ (sym (cong fst p))))
        i , j , i≢j , p = pigeonhole-special g
      in
        inject< ≤-refl i
      , inject< ≤-refl j
      , (λ q → i≢j (Fin-fst-≡ (cong fst q)))
      , punchOut-inj
          {i = f (suc n , ≤-refl)}
          {j = f (inject< ≤-refl i)}
          {k = f (inject< ≤-refl j)}
          (λ q → h (i , Fin-fst-≡ (sym (cong fst q))))
          (λ q → h (j , Fin-fst-≡ (sym (cong fst q))))
          (Fin-fst-≡ (cong fst p))
pigeonhole
  : ∀ {m n}
  → m < n
  → (f : Fin n → Fin m)
  → Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] (¬ i ≡ j) × (f i ≡ f j)
pigeonhole {m} {n} (zero , sm≡n) f =
  transport transport-prf (pigeonhole-special f′)
  where
    f′ : Fin (suc m) → Fin m
    f′ = subst (λ h → Fin h → Fin m) (sym sm≡n) f
    f′≡f : PathP (λ i → Fin (sm≡n i) → Fin m) f′ f
    f′≡f i = transport-fillerExt (cong (λ h → Fin h → Fin m) (sym sm≡n)) (~ i) f
    transport-prf
      : (Σ[ i ∈ Fin (suc m) ] Σ[ j ∈ Fin (suc m) ] (¬ i ≡ j) × (f′ i ≡ f′ j))
      ≡ (Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] (¬ i ≡ j) × (f i ≡ f j))
    transport-prf φ =
      Σ[ i ∈ Fin (sm≡n φ) ] Σ[ j ∈ Fin (sm≡n φ) ]
        (¬ i ≡ j) × (f′≡f φ i ≡ f′≡f φ j)
pigeonhole {m} {n} (suc k , prf) f =
  let
    g : Fin (suc n′) → Fin n′
    g k = fst (f′ k) , <-trans (snd (f′ k)) m<n′
    i , j , ¬q , r = pigeonhole-special g
  in transport transport-prf (i , j , ¬q , Σ≡Prop (λ _ → isProp≤) (cong fst r))
  where
    n′ : ℕ
    n′ = k + suc m
    n≡sn′ : n ≡ suc n′
    n≡sn′ =
      n ≡⟨ sym prf ⟩
      suc (k + suc m) ≡⟨ refl ⟩
      suc n′ ∎
    m<n′ : m < n′
    m<n′ = k , injSuc (suc (k + suc m) ≡⟨ prf ⟩ n ≡⟨ n≡sn′ ⟩ suc n′ ∎)
    f′ : Fin (suc n′) → Fin m
    f′ = subst (λ h → Fin h → Fin m) n≡sn′ f
    f′≡f : PathP (λ i → Fin (n≡sn′ (~ i)) → Fin m) f′ f
    f′≡f i = transport-fillerExt (cong (λ h → Fin h → Fin m) n≡sn′) (~ i) f
    transport-prf
      : (Σ[ i ∈ Fin (suc n′) ] Σ[ j ∈ Fin (suc n′) ] (¬ i ≡ j) × (f′ i ≡ f′ j))
      ≡ (Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] (¬ i ≡ j) × (f i ≡ f j))
    transport-prf φ =
      Σ[ i ∈ Fin (n≡sn′ (~ φ)) ] Σ[ j ∈ Fin (n≡sn′ (~ φ)) ]
        (¬ i ≡ j) × (f′≡f φ i ≡ f′≡f φ j)
Fin-inj′ : {n m : ℕ} → n < m → ¬ Fin m ≡ Fin n
Fin-inj′ n<m p =
  let
    i , j , i≢j , q = pigeonhole n<m (transport p)
  in i≢j (
    i ≡⟨ refl ⟩
    fst (pigeonhole n<m (transport p)) ≡⟨ transport-p-inj {p = p} q ⟩
    fst (snd (pigeonhole n<m (transport p))) ≡⟨ refl ⟩
    j ∎
  )
  where
    transport-p-inj
      : ∀ {A B : Type ℓ} {x y : A} {p : A ≡ B}
      → transport p x ≡ transport p y
      → x ≡ y
    transport-p-inj {x = x} {y = y} {p = p} q =
      x ≡⟨ sym (transport⁻Transport p x) ⟩
      transport (sym p) (transport p x) ≡⟨ cong (transport (sym p)) q ⟩
      transport (sym p) (transport p y) ≡⟨ transport⁻Transport p y ⟩
      y ∎
Fin-inj : (n m : ℕ) → Fin n ≡ Fin m → n ≡ m
Fin-inj n m p with n ≟ m
... | eq prf = prf
... | lt n<m = Empty.rec (Fin-inj′ n<m (sym p))
... | gt n>m = Empty.rec (Fin-inj′ n>m p)
≤-·sk-cancel : ∀ {m} {k} {n} → m · suc k ≤ n · suc k → m ≤ n
≤-·sk-cancel {m} {k} {n} (d , p) = o , inj-·sm {m = k} goal where
  r = d % suc k
  o = d / suc k
  resn·k : Residue (suc k) (n · suc k)
  resn·k = ((r , n%sk<sk d k) , (o + m)) , reason where
   reason = expand× ((r , n%sk<sk d k) , o + m) ≡⟨ expand≡ (suc k) r (o + m) ⟩
            (o + m) · suc k + r                 ≡[ i ]⟨ +-comm (·-distribʳ o m (suc k) (~ i)) r i ⟩
            r + (o · suc k + m · suc k)         ≡⟨ +-assoc r (o · suc k) (m · suc k) ⟩
            (r + o · suc k) + m · suc k         ≡⟨ cong (_+ m · suc k) (+-comm r (o · suc k) ∙ moddiv d (suc k)) ⟩
            d + m · suc k                       ≡⟨ p ⟩
            n · suc k ∎
  residuek·n : ∀ k n → (r : Residue (suc k) (n · suc k)) → ((fzero , n) , expand≡ (suc k) 0 n ∙ +-zero _) ≡ r
  residuek·n _ _ = isContr→isProp isContrResidue _
  r≡0 : r ≡ 0
  r≡0 = cong (toℕ ∘ extract) (sym (residuek·n k n resn·k))
  d≡o·sk : d ≡ o · suc k
  d≡o·sk = sym (moddiv d (suc k)) ∙∙ cong (o · suc k +_) r≡0 ∙∙ +-zero _
  goal : (o + m) · suc k ≡ n · suc k
  goal = sym (·-distribʳ o m (suc k)) ∙∙ cong (_+ m · suc k) (sym d≡o·sk) ∙∙ p
<-·sk-cancel : ∀ {m} {k} {n} → m · suc k < n · suc k → m < n
<-·sk-cancel {m} {k} {n} p = goal where
  ≤-helper : m ≤ n
  ≤-helper = ≤-·sk-cancel (pred-≤-pred (<≤-trans p (≤-suc ≤-refl)))
  goal : m < n
  goal = case <-split (suc-≤-suc ≤-helper) of λ
    { (inl g) → g
    ; (inr e) → Empty.rec (¬m<m (subst (λ m → m · suc k < n · suc k) e p))
    }
factorEquiv : ∀ {n} {m} → Fin n × Fin m ≃ Fin (n · m)
factorEquiv {zero} {m} = uninhabEquiv (¬Fin0 ∘ fst) ¬Fin0
factorEquiv {suc n} {m} = intro , isEmbedding×isSurjection→isEquiv (isEmbeddingIntro , isSurjectionIntro) where
  intro : Fin (suc n) × Fin m → Fin (suc n · m)
  intro (nn , mm) = nm , subst (λ nm₁ → nm₁ < suc n · m) (sym (expand≡ _ (toℕ nn) (toℕ mm))) nm<n·m where
    nm : ℕ
    nm = expand× (nn , toℕ mm)
    nm<n·m : toℕ mm · suc n + toℕ nn < suc n · m
    nm<n·m =
      toℕ mm · suc n + toℕ nn <≤⟨ <-k+ (snd nn) ⟩
      toℕ mm · suc n + suc n  ≡≤⟨ +-comm _ (suc n) ⟩
      suc (toℕ mm) · suc n    ≤≡⟨ ≤-·k (snd mm) ⟩
      m · suc n               ≡⟨ ·-comm _ (suc n) ⟩
      suc n · m               ∎ where open <-Reasoning
  intro-injective : ∀ {o} {p} → intro o ≡ intro p → o ≡ p
  intro-injective {o} {p} io≡ip = λ i → io′≡ip′ i .fst , toℕ-injective {fj = snd o} {fk = snd p} (cong snd io′≡ip′) i where
    io′≡ip′ : (fst o , toℕ (snd o)) ≡ (fst p , toℕ (snd p))
    io′≡ip′ = expand×Inj _ (cong fst io≡ip)
  isEmbeddingIntro : isEmbedding intro
  isEmbeddingIntro = injEmbedding isSetFin intro-injective
  elimF : ∀ nm → fiber intro nm
  elimF nm = ((nn , nn<n) , (mm , mm<m)) , toℕ-injective (reduce n (toℕ nm) .snd) where
    mm = toℕ nm / suc n
    nn = toℕ nm % suc n
    nmmoddiv : mm · suc n + nn ≡ toℕ nm
    nmmoddiv = moddiv _ (suc n)
    nn<n : nn < suc n
    nn<n = n%sk<sk (toℕ nm) _
    nmsnd : mm · suc n + nn < suc n · m
    nmsnd = subst (λ l → l < suc n · m) (sym nmmoddiv) (snd nm)
    mm·sn<m·sn : mm · suc n < m · suc n
    mm·sn<m·sn =
      mm · suc n      ≤<⟨ nn , +-comm nn (mm · suc n) ⟩
      mm · suc n + nn <≡⟨ nmsnd ⟩
      suc n · m       ≡⟨ ·-comm (suc n) m ⟩
      m · suc n       ∎ where open <-Reasoning
    mm<m : mm < m
    mm<m = <-·sk-cancel mm·sn<m·sn
  isSurjectionIntro : isSurjection intro
  isSurjectionIntro = ∣_∣₁ ∘ elimF
o<m→o<m+n : (m n o : ℕ) → o < m → o < (m + n)
o<m→o<m+n m n o (k , p) = (n + k) , (n + k + suc o    ≡⟨ sym (+-assoc n k _)  ⟩
                                     n + (k + suc o)  ≡⟨ cong (λ - → n + -) p ⟩
                                     n + m            ≡⟨ +-comm n m           ⟩
                                     m + n            ∎)
∸-<-lemma : (m n o : ℕ) → o < m + n → m ≤ o → o ∸ m < n
∸-<-lemma zero    n o       o<m+n m<o = o<m+n
∸-<-lemma (suc m) n zero    o<m+n m<o = Empty.rec (¬-<-zero m<o)
∸-<-lemma (suc m) n (suc o) o<m+n m<o =
  ∸-<-lemma m n o (pred-≤-pred o<m+n) (pred-≤-pred m<o)
_≤?_ : (m n : ℕ) → (m < n) ⊎ (n ≤ m)
_≤?_ m n with m ≟ n
_≤?_ m n | lt m<n = inl m<n
_≤?_ m n | eq m=n = inr (subst (λ - → - ≤ m) m=n ≤-refl)
_≤?_ m n | gt n<m = inr (<-weaken n<m)
¬-<-and-≥ : {m n : ℕ} → m < n → ¬ n ≤ m
¬-<-and-≥ {m}     {zero}  m<n n≤m = ¬-<-zero m<n
¬-<-and-≥ {zero}  {suc n} m<n n≤m = ¬-<-zero n≤m
¬-<-and-≥ {suc m} {suc n} m<n n≤m = ¬-<-and-≥ (pred-≤-pred m<n) (pred-≤-pred n≤m)
m+n∸n=m : (n m : ℕ) → (m + n) ∸ n ≡ m
m+n∸n=m zero    k = +-zero k
m+n∸n=m (suc m) k = (k + suc m) ∸ suc m   ≡⟨ cong (λ - → - ∸ suc m) (+-suc k m) ⟩
                    suc (k + m) ∸ (suc m) ≡⟨ refl                               ⟩
                    (k + m) ∸ m           ≡⟨ m+n∸n=m m k                        ⟩
                    k                     ∎
∸-lemma : {m n : ℕ} → m ≤ n → m + (n ∸ m) ≡ n
∸-lemma {zero}  {k}     _   = refl {x = k}
∸-lemma {suc m} {zero}  m≤k = Empty.rec (¬-<-and-≥ (suc-≤-suc zero-≤) m≤k)
∸-lemma {suc m} {suc k} m≤k =
  suc m + (suc k ∸ suc m)   ≡⟨ refl                                 ⟩
  suc (m + (suc k ∸ suc m)) ≡⟨ refl                                 ⟩
  suc (m + (k ∸ m))         ≡⟨ cong suc (∸-lemma (pred-≤-pred m≤k)) ⟩
  suc k                     ∎
Fin+≅Fin⊎Fin : (m n : ℕ) → Iso (Fin (m + n)) (Fin m ⊎ Fin n)
Iso.fun (Fin+≅Fin⊎Fin m n) = f
  where
    f : Fin (m + n) → Fin m ⊎ Fin n
    f (k , k<m+n) with k ≤? m
    f (k , k<m+n) | inl k<m = inl (k , k<m)
    f (k , k<m+n) | inr k≥m = inr (k ∸ m , ∸-<-lemma m n k k<m+n k≥m)
Iso.inv (Fin+≅Fin⊎Fin m n) = g
  where
    g :  Fin m  ⊎  Fin n  →  Fin (m + n)
    g (inl (k , k<m)) = k     , o<m→o<m+n m n k k<m
    g (inr (k , k<n)) = m + k , <-k+ k<n
Iso.rightInv (Fin+≅Fin⊎Fin m n) = sec-f-g
  where
    sec-f-g : _
    sec-f-g (inl (k , k<m)) with k ≤? m
    sec-f-g (inl (k , k<m)) | inl _   = cong inl (Σ≡Prop (λ _ → isProp≤) refl)
    sec-f-g (inl (k , k<m)) | inr m≤k = Empty.rec (¬-<-and-≥ k<m m≤k)
    sec-f-g (inr (k , k<n)) with (m + k) ≤? m
    sec-f-g (inr (k , k<n)) | inl p   = Empty.rec (¬m+n<m {m} {k} p)
    sec-f-g (inr (k , k<n)) | inr k≥m = cong inr (Σ≡Prop (λ _ → isProp≤) rem)
      where
        rem : (m + k) ∸ m ≡ k
        rem = subst (λ - → - ∸ m ≡ k) (+-comm k m) (m+n∸n=m m k)
Iso.leftInv  (Fin+≅Fin⊎Fin m n) = ret-f-g
  where
    ret-f-g : _
    ret-f-g (k , k<m+n) with k ≤? m
    ret-f-g (k , k<m+n) | inl _   = Σ≡Prop (λ _ → isProp≤) refl
    ret-f-g (k , k<m+n) | inr m≥k = Σ≡Prop (λ _ → isProp≤) (∸-lemma m≥k)
Fin+≡Fin⊎Fin : (m n : ℕ) → Fin (m + n) ≡ Fin m ⊎ Fin n
Fin+≡Fin⊎Fin m n = isoToPath (Fin+≅Fin⊎Fin m n)
sucFin : {N : ℕ} → Fin N → Fin (suc N)
sucFin (k , n , p) = suc k , n , (+-suc _ _ ∙ cong suc p)
FinData→Fin : (N : ℕ) → FinData N → Fin N
FinData→Fin zero ()
FinData→Fin (suc N) zero = 0 , suc-≤-suc zero-≤
FinData→Fin (suc N) (suc k) = sucFin (FinData→Fin N k)
Fin→FinData : (N : ℕ) → Fin N → FinData N
Fin→FinData zero (k , n , p) = Empty.rec (snotz (sym (+-suc n k) ∙ p))
Fin→FinData (suc N) (0 , n , p) = zero
Fin→FinData (suc N) ((suc k) , n , p) = suc (Fin→FinData N (k , n , p')) where
  p' : n + suc k ≡ N
  p' = injSuc (sym (+-suc n (suc k)) ∙ p)
secFin : (n : ℕ) → section (FinData→Fin n) (Fin→FinData n)
secFin 0 (k , n , p) = Empty.rec (snotz (sym (+-suc n k) ∙ p))
secFin (suc N) (0 , n , p) = Fin-fst-≡ refl
secFin (suc N) (suc k , n , p) = Fin-fst-≡ (cong suc (cong fst (secFin N (k , n , p')))) where
  p' : n + suc k ≡ N
  p' = injSuc (sym (+-suc n (suc k)) ∙ p)
retFin : (n : ℕ) → retract (FinData→Fin n) (Fin→FinData n)
retFin 0 ()
retFin (suc N) zero = refl
retFin (suc N) (suc k) = cong FinData.suc (cong (Fin→FinData N) (Fin-fst-≡ refl) ∙ retFin N k)
FinDataIsoFin : (N : ℕ) → Iso (FinData N) (Fin N)
Iso.fun (FinDataIsoFin N) = FinData→Fin N
Iso.inv (FinDataIsoFin N) = Fin→FinData N
Iso.rightInv (FinDataIsoFin N) = secFin N
Iso.leftInv (FinDataIsoFin N) = retFin N
FinData≃Fin : (N : ℕ) → FinData N ≃ Fin N
FinData≃Fin N = isoToEquiv (FinDataIsoFin N)
FinData≡Fin : (N : ℕ) → FinData N ≡ Fin N
FinData≡Fin N = ua (FinData≃Fin N)
DecFin : (n : ℕ) → Dec (Fin n)
DecFin 0 = no ¬Fin0
DecFin (suc n) = yes fzero
Dec∥Fin∥ : (n : ℕ) → Dec ∥ Fin n ∥₁
Dec∥Fin∥ n = Dec∥∥ (DecFin n)
Fin>0→isInhab : (n : ℕ) → 0 < n → Fin n
Fin>0→isInhab 0 p = Empty.rec (¬-<-zero p)
Fin>0→isInhab (suc n) p = fzero
Fin>1→hasNonEqualTerm : (n : ℕ) → 1 < n → Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] ¬ i ≡ j
Fin>1→hasNonEqualTerm 0 p = Empty.rec (snotz (≤0→≡0 p))
Fin>1→hasNonEqualTerm 1 p = Empty.rec (snotz (≤0→≡0 (pred-≤-pred p)))
Fin>1→hasNonEqualTerm (suc (suc n)) _ = fzero , fone , fzero≠fone
isEmpty→Fin≡0 : (n : ℕ) → ¬ Fin n → 0 ≡ n
isEmpty→Fin≡0 0 _ = refl
isEmpty→Fin≡0 (suc n) p = Empty.rec (p fzero)
isInhab→Fin>0 : (n : ℕ) → Fin n → 0 < n
isInhab→Fin>0 0 i = Empty.rec (¬Fin0 i)
isInhab→Fin>0 (suc n) _ = suc-≤-suc zero-≤
hasNonEqualTerm→Fin>1 : (n : ℕ) → (i j : Fin n) → ¬ i ≡ j → 1 < n
hasNonEqualTerm→Fin>1 0 i _ _ = Empty.rec (¬Fin0 i)
hasNonEqualTerm→Fin>1 1 i j p = Empty.rec (p (isContr→isProp isContrFin1 i j))
hasNonEqualTerm→Fin>1 (suc (suc n)) _ _ _ = suc-≤-suc (suc-≤-suc zero-≤)
Fin≤1→isProp : (n : ℕ) → n ≤ 1 → isProp (Fin n)
Fin≤1→isProp 0 _ = isPropFin0
Fin≤1→isProp 1 _ = isContr→isProp isContrFin1
Fin≤1→isProp (suc (suc n)) p = Empty.rec (¬-<-zero (pred-≤-pred p))
isProp→Fin≤1 : (n : ℕ) → isProp (Fin n) → n ≤ 1
isProp→Fin≤1 0 _ = ≤-solver 0 1
isProp→Fin≤1 1 _ = ≤-solver 1 1
isProp→Fin≤1 (suc (suc n)) p = Empty.rec (fzero≠fone (p fzero fone))
CharacΠFinIso : ∀ {ℓ} (n : ℕ) {B : Fin (suc n) → Type ℓ}
  → Iso ((x : _) → B x) (B fzero × ((x : _) → B (fsuc x)))
Iso.fun (CharacΠFinIso n {B = B}) f = f fzero , f ∘ fsuc
Iso.inv (CharacΠFinIso n {B = B}) (x , f) (zero , p) =
  subst B (Fin-fst-≡ {i = fzero} {j = zero , p} refl) x
Iso.inv (CharacΠFinIso n {B = B}) (x , f) (suc y , p) =
  subst B (Fin-fst-≡ refl) (f (y , pred-≤-pred p))
Iso.rightInv (CharacΠFinIso n {B = B}) (x , f) =
  ΣPathP ((λ j →
    transp (λ i → B (isSetFin fzero fzero (Fin-fst-≡ (λ _ → zero)) refl j i)) j x)
  , funExt λ x → (λ j → subst B (pathid x j)
                           (f (fst x , pred-≤-pred (suc-≤-suc (snd x)))))
                ∙ (λ i → transp (λ j → B (path₃ x (i ∨ j))) i (f (path₂ x i))))
  where
  module _ (x : Fin n) where
    path₁ : _
    path₁ = Fin-fst-≡ {i = (fsuc (fst x , pred-≤-pred (snd (fsuc x))))}
                      {j = fsuc x} refl
    path₂ : _
    path₂ = Fin-fst-≡ refl
    path₃ : _
    path₃ = cong fsuc path₂
    pathid : path₁ ≡ path₃
    pathid = isSetFin _ _ _ _
Iso.leftInv (CharacΠFinIso n {B = B}) f =
  funExt λ { (zero , p) j
    → transp (λ i → B (Fin-fst-≡ {i = fzero} {j = zero , p} refl (i ∨ j)))
              j (f (Fin-fst-≡ {i = fzero} {j = zero , p} refl j))
           ; (suc x , p) j → transp (λ i → B (q x p (i ∨ j))) j (f (q x p j))}
  where
  q : (x : _) (p : _) → _
  q x p = Fin-fst-≡ {i = (fsuc (x , pred-≤-pred p))} {j = suc x , p} refl
module _ (_+A_ : A → A → A) (0A : A)
  (rUnit : (x : _) → x +A 0A ≡ x)
   where
  sumFinGen0 : (n : ℕ) (f : Fin n → A)
    → ((x : _) → f x ≡ 0A)
    → sumFinGen _+A_ 0A f
    ≡ 0A
  sumFinGen0 zero f ind = refl
  sumFinGen0 (suc n) f ind =
    cong₂ _+A_
      (ind flast)
      (sumFinGen0 n (f ∘ injectSuc) (λ x → ind (injectSuc x))) ∙ rUnit 0A
  module _ (comm : (x y : A) → x +A y ≡ y +A x) where
    private
      lUnitA : (x : _) → 0A +A x ≡ x
      lUnitA x = comm _ _ ∙ rUnit x
    sumFin-choose :
      {n : ℕ} (f : Fin n → A)
      → (a : A) (x : Fin n)
      → (f x ≡ a)
      → ((x' : Fin n) → ¬ (x' ≡ x) → f x' ≡ 0A)
      → sumFinGen {n = n} _+A_ 0A f ≡ a
    sumFin-choose {zero} f a x p t = Empty.rec (¬Fin0 x)
    sumFin-choose {suc n} f a x p t with (n ≟ fst x)
    ... | lt x₁ =
      Empty.rec (¬m<m {suc n} ((fst (snd x)) + fst x₁
           , (sym (+-assoc (fst (snd x)) (fst x₁) (suc (suc n)))
           ∙ (cong (fst (snd x) +_ ) (+-suc (fst x₁) (suc n))))
           ∙ sym ((sym (snd x .snd))
                ∙ cong (fst (snd x) +_) (sym (cong suc (x₁ .snd))))))
    ... | eq x₁ =
      cong (f flast +A_) (sumFinGen0 n _
        λ h → t _ λ q → ¬m<m (subst (_< n) (cong fst q ∙ sym x₁) (snd h)))
             ∙ rUnit _ ∙ sym (cong f x=flast) ∙ p
      where
      x=flast : x ≡ flast
      x=flast = Σ≡Prop (λ _ → isProp≤) (sym x₁)
    ... | gt x₁ =
      cong₂ _+A_
         (t flast (λ p → ¬m<m (subst (_< n) (sym (cong fst p)) x₁)))
         refl
      ∙ lUnitA _
      ∙ sumFin-choose {n = n} (f ∘ injectSuc) a (fst x , x₁)
          (cong f (Σ≡Prop (λ _ → isProp≤) refl) ∙ p)
          λ a r → t (injectSuc a) λ d → r (Σ≡Prop (λ _ → isProp≤)
          (cong fst d))
    module _ (assocA : (x y z : A) → x +A (y +A z) ≡ (x +A y) +A z) where
      sumFinGenHom : (n : ℕ) (f g : Fin n → A)
        → sumFinGen _+A_ 0A (λ x → f x +A g x)
         ≡ (sumFinGen _+A_ 0A f +A sumFinGen _+A_ 0A g)
      sumFinGenHom zero f g = sym (rUnit 0A)
      sumFinGenHom (suc n) f g =
          cong ((f flast +A g flast) +A_) (sumFinGenHom n (f ∘ injectSuc) (g ∘ injectSuc))
        ∙ move4 (f flast) (g flast)
                (sumFinGen _+A_ 0A (λ x → f (injectSuc x)))
                (sumFinGen _+A_ 0A (λ x → g (injectSuc x)))
                _+A_ assocA comm
sumFinGenId : {n : ℕ} (_+_ : A → A → A) (0A : A)
  (f g : Fin n → A) → f ≡ g → sumFinGen _+_ 0A f ≡ sumFinGen _+_ 0A g
sumFinGenId _+_ 0A f g p i = sumFinGen _+_ 0A (p i)