{-# OPTIONS --safe #-}
module Cubical.Categories.Presheaf.More where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Categories.Category
open import Cubical.Categories.Limits.Terminal
open import Cubical.Categories.Constructions.Lift
open import Cubical.Categories.Constructions.Elements
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Representable
open import Cubical.Categories.Instances.Sets.More
open import Cubical.Categories.Isomorphism.More
open Category
open Functor
private
variable
ℓ ℓ' ℓS ℓS' : Level
PshIso : (C : Category ℓ ℓ')
(P : Presheaf C ℓS)
(Q : Presheaf C ℓS') → Type (ℓ-max (ℓ-max (ℓ-max ℓ ℓ') ℓS) ℓS')
PshIso {ℓS = ℓS}{ℓS' = ℓS'} C P Q =
CatIso (FUNCTOR (C ^op) (SET (ℓ-max ℓS ℓS')))
(LiftF {ℓ = ℓS}{ℓ' = ℓS'} ∘F P)
(LiftF {ℓ = ℓS'}{ℓ' = ℓS} ∘F Q)
IdPshIso : (C : Category ℓ ℓ') (P : Presheaf C ℓS) → PshIso C P P
IdPshIso C P = idCatIso
𝓟o = Presheaf
𝓟* : Category ℓ ℓ' → (ℓS : Level) → Type (ℓ-max (ℓ-max ℓ ℓ') (ℓ-suc ℓS))
𝓟* C ℓS = Functor C (SET ℓS)
module _ (C : Category ℓ ℓ') (c : C .ob) where
open Category
open UniversalElement
selfUnivElt : UniversalElement C (C [-, c ])
selfUnivElt .vertex = c
selfUnivElt .element = C .id
selfUnivElt .universal A = isoToIsEquiv (iso _ (λ z → z)
(C .⋆IdR)
(C .⋆IdR))
selfUnivEltᵒᵖ : UniversalElement (C ^op) (C [ c ,-])
selfUnivEltᵒᵖ .vertex = c
selfUnivEltᵒᵖ .element = C .id
selfUnivEltᵒᵖ .universal _ = isoToIsEquiv (iso _ (λ z → z)
(C .⋆IdL)
(C .⋆IdL))
module _ {ℓo}{ℓh}{ℓp} (C : Category ℓo ℓh) (P : Presheaf C ℓp) where
open UniversalElement
UniversalElementOn : C .ob → Type (ℓ-max (ℓ-max ℓo ℓh) ℓp)
UniversalElementOn vertex =
Σ[ element ∈ (P ⟅ vertex ⟆) .fst ] isUniversal C P vertex element
UniversalElementToUniversalElementOn :
(ue : UniversalElement C P) → UniversalElementOn (ue .vertex)
UniversalElementToUniversalElementOn ue .fst = ue .element
UniversalElementToUniversalElementOn ue .snd = ue .universal
module UniversalElementNotation {ℓo}{ℓh}
{C : Category ℓo ℓh} {ℓp} {P : Presheaf C ℓp}
(ue : UniversalElement C P)
where
open UniversalElement ue public
open NatTrans
open NatIso
REPR : Representation C P
REPR = universalElementToRepresentation C P ue
unIntroNT : NatTrans (LiftF {ℓ' = ℓp} ∘F (C [-, vertex ]))
(LiftF {ℓ' = ℓh} ∘F P)
unIntroNT = REPR .snd .trans
introNI : NatIso (LiftF {ℓ' = ℓh} ∘F P) (LiftF {ℓ' = ℓp} ∘F (C [-, vertex ]))
introNI = symNatIso (REPR .snd)
intro : ∀ {c} → ⟨ P ⟅ c ⟆ ⟩ → C [ c , vertex ]
intro p = universal _ .equiv-proof p .fst .fst
β : ∀ {c} → {p : ⟨ P ⟅ c ⟆ ⟩} → (element ∘ᴾ⟨ C , P ⟩ intro p) ≡ p
β {p = p} = universal _ .equiv-proof p .fst .snd
η : ∀ {c} → {f : C [ c , vertex ]} → f ≡ intro (element ∘ᴾ⟨ C , P ⟩ f)
η {f = f} = cong fst (sym (universal _ .equiv-proof (element ∘ᴾ⟨ C , P ⟩ f)
.snd (_ , refl)))
weak-η : C .id ≡ intro element
weak-η = η ∙ cong intro (∘ᴾId C P _)
extensionality : ∀ {c} → {f f' : C [ c , vertex ]}
→ (element ∘ᴾ⟨ C , P ⟩ f) ≡ (element ∘ᴾ⟨ C , P ⟩ f')
→ f ≡ f'
extensionality = isoFunInjective (equivToIso (_ , (universal _))) _ _
intro-natural : ∀ {c' c} → {p : ⟨ P ⟅ c ⟆ ⟩}{f : C [ c' , c ]}
→ intro p ∘⟨ C ⟩ f ≡ intro (p ∘ᴾ⟨ C , P ⟩ f)
intro-natural = extensionality
( (∘ᴾAssoc C P _ _ _
∙ cong (action C P _) β)
∙ sym β)