{-# OPTIONS --safe #-}
module Cubical.Categories.Functor.BinProduct where
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Constructions.BinProduct
open import Cubical.Categories.Functor.Base
open import Cubical.Data.Sigma.Properties
open import Cubical.Foundations.Prelude
private
variable
ℓA ℓA' ℓB ℓB' ℓC ℓC' ℓD ℓD' : Level
A : Category ℓA ℓA'
B : Category ℓB ℓB'
C : Category ℓC ℓC'
D : Category ℓD ℓD'
open Functor
_×F_ : Functor A C → Functor B D → Functor (A × B) (C × D)
(G ×F H) .F-ob (a , b) = (G ⟅ a ⟆ , H ⟅ b ⟆)
(G ×F H) .F-hom (g , h) = (G ⟪ g ⟫ , H ⟪ h ⟫)
(G ×F H) .F-id = ≡-× (G .F-id) (H .F-id)
(G ×F H) .F-seq _ _ = ≡-× (G .F-seq _ _) (H .F-seq _ _)