{-# OPTIONS --safe #-}

module Cubical.Categories.Adjoint where

open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence

open Functor

open Iso
open Category

{-
==============================================
                  Overview
==============================================

This module contains two definitions for adjoint
functors, and functions witnessing their
logical (and maybe eventually actual?)
equivalence.
-}

private
  variable
    ℓC ℓC' ℓD ℓD' : Level

{-
==============================================
             Adjoint definitions
==============================================

We provide two alternative definitions for
adjoint functors: the unit-counit
definition, followed by the natural bijection
definition.
-}

module UnitCounit where

  -- Adjoint def 1: unit-counit
  record _⊣_ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} (F : Functor C D) (G : Functor D C)
                  : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where
    field
      -- unit
      η : 𝟙⟨ C   (funcComp G F)
      -- counit
      ε : (funcComp F G)  𝟙⟨ D 
      -- triangle identities
      Δ₁ : PathP  i  NatTrans (F-lUnit {F = F} i) (F-rUnit {F = F} i))
        (seqTransP F-assoc (F ∘ʳ η) (ε ∘ˡ F))
        (1[ F ])
      Δ₂ : PathP  i  NatTrans (F-rUnit {F = G} i) (F-lUnit {F = G} i))
        (seqTransP (sym F-assoc) (η ∘ˡ G) (G ∘ʳ ε))
        (1[ G ])

  {-
   Helper function for building unit-counit adjunctions between categories,
   using that equality of natural transformations in a category is equality on objects
  -}

  module _ {ℓC ℓC' ℓD ℓD'}
    {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} {F : Functor C D} {G : Functor D C}
    (η : 𝟙⟨ C   (funcComp G F))
    (ε : (funcComp F G)  𝟙⟨ D )
    (Δ₁ :  c  F  η  c   ⋆⟨ D  ε  F  c    D .id)
    (Δ₂ :  d  η  G  d   ⋆⟨ C  G  ε  d    C .id)
    where

    make⊣ : F  G
    make⊣ ._⊣_.η = η
    make⊣ ._⊣_.ε = ε
    make⊣ ._⊣_.Δ₁ =
      makeNatTransPathP F-lUnit F-rUnit
        (funExt λ c  cong (D ._⋆_ (F  η  c  )) (transportRefl _)  Δ₁ c)
    make⊣ ._⊣_.Δ₂ =
      makeNatTransPathP F-rUnit F-lUnit
        (funExt λ d  cong (C ._⋆_ (η  G  d  )) (transportRefl _)  Δ₂ d)

module NaturalBijection where
  -- Adjoint def 2: natural bijection
  record _⊣_ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} (F : Functor C D) (G : Functor D C) : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where
    field
      adjIso :  {c d}  Iso (D [ F  c  , d ]) (C [ c , G  d  ])

    infix 40 _♭
    infix 40 _♯
    _♭ :  {c d}  (D [ F  c  , d ])  (C [ c , G  d  ])
    (_♭) {_} {_} = adjIso .fun

    _♯ :  {c d}  (C [ c , G  d  ])  (D [ F  c  , d ])
    (_♯) {_} {_} = adjIso .inv

    field
      adjNatInD :  {c : C .ob} {d d'} (f : D [ F  c  , d ]) (k : D [ d , d' ])
                 (f ⋆⟨ D  k)   f  ⋆⟨ C  G  k 

      adjNatInC :  {c' c d} (g : C [ c , G  d  ]) (h : C [ c' , c ])
                 (h ⋆⟨ C  g)   F  h  ⋆⟨ D  g 

    adjNatInD' :  {c : C .ob} {d d'} (g : C [ c , G  d  ]) (k : D [ d , d' ])
                 g  ⋆⟨ D  k  (g ⋆⟨ C  G  k ) 
    adjNatInD' {c} {d} {d'} g k =
      g  ⋆⟨ D  k
        ≡⟨ sym (adjIso .leftInv (g  ⋆⟨ D  k)) 
      ((g  ⋆⟨ D  k) ) 
        ≡⟨ cong _♯ (adjNatInD (g ) k) 
      ((g )  ⋆⟨ C  G  k ) 
        ≡⟨ cong _♯ (cong  g'  seq' C g' (G  k )) (adjIso .rightInv g)) 
      (g ⋆⟨ C  G  k )  

    adjNatInC' :  {c' c d} (f : D [ F  c  , d ]) (h : C [ c' , c ])
                 h ⋆⟨ C  (f )  (F  h  ⋆⟨ D  f) 
    adjNatInC' {c'} {c} {d} f h =
      h ⋆⟨ C  (f )
        ≡⟨ sym (adjIso .rightInv (h ⋆⟨ C  (f ))) 
      ((h ⋆⟨ C  (f )) ) 
        ≡⟨ cong _♭ (adjNatInC (f ) h) 
      ((F  h  ⋆⟨ D  (f ) ) )
        ≡⟨ cong _♭ (cong  f'  seq' D (F  h ) f') (adjIso .leftInv f)) 
      (F  h  ⋆⟨ D  f)  

  isLeftAdjoint : {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} (F : Functor C D)  Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD'))
  isLeftAdjoint {C = C}{D} F = Σ[ G  Functor D C ] F  G

  isRightAdjoint : {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} (G : Functor D C)  Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD'))
  isRightAdjoint {C = C}{D} G = Σ[ F  Functor C D ] F  G

{-
==============================================
            Proofs of equivalence
==============================================

This first unnamed module provides a function
adj'→adj which takes you from the second
definition to the first.

The second unnamed module does the reverse.
-}

module _ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} (F : Functor C D) (G : Functor D C) where
  open UnitCounit
  open NaturalBijection renaming (_⊣_ to _⊣²_)
  module _ (adj : F ⊣² G) where
    open _⊣²_ adj
    open _⊣_

    -- Naturality condition implies that a commutative square in C
    -- appears iff the transpose in D is commutative as well
    -- Used in adj'→adj
    adjNat' :  {c c' d d'} {f : D [ F  c  , d ]} {k : D [ d , d' ]}
             {h : C [ c , c' ]} {g : C [ c' , G  d'  ]}
            -- commutativity of squares is iff
             ((f ⋆⟨ D  k  F  h  ⋆⟨ D  g )  (f  ⋆⟨ C  G  k   h ⋆⟨ C  g))
            × ((f  ⋆⟨ C  G  k   h ⋆⟨ C  g)  (f ⋆⟨ D  k  F  h  ⋆⟨ D  g ))
    adjNat' {c} {c'} {d} {d'} {f} {k} {h} {g} = D→C , C→D
      where
        D→C : (f ⋆⟨ D  k  F  h  ⋆⟨ D  g )  (f  ⋆⟨ C  G  k   h ⋆⟨ C  g)
        D→C eq = f  ⋆⟨ C  G  k 
              ≡⟨ sym (adjNatInD _ _) 
                ((f ⋆⟨ D  k) )
              ≡⟨ cong _♭ eq 
                (F  h  ⋆⟨ D  g ) 
              ≡⟨ sym (cong _♭ (adjNatInC _ _)) 
                (h ⋆⟨ C  g)  
              ≡⟨ adjIso .rightInv _ 
                h ⋆⟨ C  g
              
        C→D : (f  ⋆⟨ C  G  k   h ⋆⟨ C  g)  (f ⋆⟨ D  k  F  h  ⋆⟨ D  g )
        C→D eq = f ⋆⟨ D  k
              ≡⟨ sym (adjIso .leftInv _) 
                (f ⋆⟨ D  k)  
              ≡⟨ cong _♯ (adjNatInD _ _) 
                (f  ⋆⟨ C  G  k ) 
              ≡⟨ cong _♯ eq 
                (h ⋆⟨ C  g) 
              ≡⟨ adjNatInC _ _ 
                F  h  ⋆⟨ D  g 
              

    open NatTrans

    -- note : had to make this record syntax because termination checker was complaining
    -- due to referencing η and ε from the definitions of Δs
    adj'→adj : F  G
    adj'→adj = record
      { η = η'
      ; ε = ε'
      ; Δ₁ = Δ₁'
      ; Δ₂ = Δ₂' }

      where
        -- ETA

        -- trivial commutative diagram between identities in D
        commInD :  {x y} (f : C [ x , y ])  D .id ⋆⟨ D  F  f   F  f  ⋆⟨ D  D .id
        commInD f = (D .⋆IdL _)  sym (D .⋆IdR _)

        sharpen1 :  {x y} (f : C [ x , y ])  F  f  ⋆⟨ D  D .id  F  f  ⋆⟨ D  D .id  
        sharpen1 f = cong  v  F  f  ⋆⟨ D  v) (sym (adjIso .leftInv _))

        η' : 𝟙⟨ C   G ∘F F
        η' .N-ob x = D .id 
        η' .N-hom f = sym (fst (adjNat') (commInD f  sharpen1 f))

        -- EPSILON

        -- trivial commutative diagram between identities in C
        commInC :  {x y} (g : D [ x , y ])  C .id ⋆⟨ C  G  g   G  g  ⋆⟨ C  C .id
        commInC g = (C .⋆IdL _)  sym (C .⋆IdR _)

        sharpen2 :  {x y} (g : D [ x , y ])  C .id   ⋆⟨ C  G  g   C .id ⋆⟨ C  G  g 
        sharpen2 g = cong  v  v ⋆⟨ C  G  g ) (adjIso .rightInv _)

        ε' : F ∘F G  𝟙⟨ D 
        ε' .N-ob x  = C .id 
        ε' .N-hom g = sym (snd adjNat' (sharpen2 g  commInC g))

        -- DELTA 1

        expL :  (c)
             (seqTransP F-assoc (F ∘ʳ η') (ε' ∘ˡ F) .N-ob c)
               F  η'  c   ⋆⟨ D  ε'  F  c  
        expL c = seqTransP F-assoc (F ∘ʳ η') (ε' ∘ˡ F) .N-ob c
              ≡⟨ refl 
                seqP {C = D} {p = refl} (F  η'  c  ) (ε'  F  c  )
              ≡⟨ seqP≡seq {C = D} _ _ 
                F  η'  c   ⋆⟨ D  ε'  F  c  
              

        body :  (c)
             (idTrans F)  c   (seqTransP F-assoc (F ∘ʳ η') (ε' ∘ˡ F) .N-ob c)
        body c = (idTrans F)  c 
              ≡⟨ refl 
                D .id
              ≡⟨ sym (D .⋆IdL _) 
                D .id ⋆⟨ D  D .id
              ≡⟨ snd adjNat' (cong  v  (η'  c ) ⋆⟨ C  v) (G .F-id)) 
                F  η'  c   ⋆⟨ D  ε'  F  c  
              ≡⟨ sym (expL c) 
                seqTransP F-assoc (F ∘ʳ η') (ε' ∘ˡ F) .N-ob c
              

        Δ₁' : PathP  i  NatTrans (F-lUnit {F = F} i) (F-rUnit {F = F} i))
                    (seqTransP F-assoc (F ∘ʳ η') (ε' ∘ˡ F))
                    (1[ F ])
        Δ₁' = makeNatTransPathP F-lUnit F-rUnit (sym (funExt body))

        -- DELTA 2

        body2 :  (d)
              seqP {C = C} {p = refl} ((η' ∘ˡ G)  d ) ((G ∘ʳ ε')  d )  C .id
        body2 d = seqP {C = C} {p = refl} ((η' ∘ˡ G)  d ) ((G ∘ʳ ε')  d )
                ≡⟨ seqP≡seq {C = C} _ _ 
                  ((η' ∘ˡ G)  d ) ⋆⟨ C  ((G ∘ʳ ε')  d )
                ≡⟨ refl 
                  (η'  G  d  ) ⋆⟨ C  (G  ε'  d  )
                ≡⟨ fst adjNat' (cong  v  v ⋆⟨ D  (ε'  d )) (sym (F .F-id))) 
                  C .id ⋆⟨ C  C .id
                ≡⟨ C .⋆IdL _ 
                  C .id
                

        Δ₂' : PathP  i  NatTrans (F-rUnit {F = G} i) (F-lUnit {F = G} i))
              (seqTransP (sym F-assoc) (η' ∘ˡ G) (G ∘ʳ ε'))
              (1[ G ])
        Δ₂' = makeNatTransPathP F-rUnit F-lUnit (funExt body2)


  module _ (adj : F  G) where
    open _⊣_ adj
    open _⊣²_
    open NatTrans

    -- helper functions for working with this Adjoint definition

    δ₁ :  {c}  (F  η  c   ⋆⟨ D  ε  F  c  )  D .id
    δ₁ {c} = (F  η  c   ⋆⟨ D  ε  F  c  )
          ≡⟨ sym (seqP≡seq {C = D} _ _) 
            seqP {C = D} {p = refl} (F  η  c  ) (ε  F  c  )
          ≡⟨  j  (Δ₁ j) .N-ob c) 
            D .id
          

    δ₂ :  {d}  (η  G  d   ⋆⟨ C  G  ε  d  )  C .id
    δ₂ {d} = (η  G  d   ⋆⟨ C  G  ε  d  )
        ≡⟨ sym (seqP≡seq {C = C} _ _) 
          seqP {C = C} {p = refl} (η  G  d  ) (G  ε  d  )
        ≡⟨  j  (Δ₂ j) .N-ob d) 
          C .id
        


    adj→adj' : F ⊣² G
    -- ∀ {c d} → Iso (D [ F ⟅ c ⟆ , d ]) (C [ c , G ⟅ d ⟆ ])
    -- takes f to Gf precomposed with the unit
    adj→adj' .adjIso {c = c} .fun f = η  c  ⋆⟨ C  G  f 
    -- takes g to Fg postcomposed with the counit
    adj→adj' .adjIso {d = d} .inv g = F  g  ⋆⟨ D  ε  d 
    -- invertibility follows from the triangle identities
    adj→adj' .adjIso {c = c} {d} .rightInv g
      = η  c  ⋆⟨ C  G  F  g  ⋆⟨ D  ε  d   -- step0 ∙ step1 ∙ step2 ∙ (C .⋆IdR _)
      ≡⟨ cong  v  η  c  ⋆⟨ C  v) (G .F-seq _ _) 
        η  c  ⋆⟨ C  (G  F  g   ⋆⟨ C  G  ε  d  )
      ≡⟨ sym (C .⋆Assoc _ _ _) 
        η  c  ⋆⟨ C  G  F  g   ⋆⟨ C  G  ε  d  
      -- apply naturality
      ≡⟨ rCatWhisker {C = C} _ _ _ natu 
        (g ⋆⟨ C  η  G  d  ) ⋆⟨ C  G  ε  d  
      ≡⟨ C .⋆Assoc _ _ _ 
        g ⋆⟨ C  (η  G  d   ⋆⟨ C  G  ε  d  )
      ≡⟨ lCatWhisker {C = C} _ _ _ δ₂ 
        g ⋆⟨ C  C .id
      ≡⟨ C .⋆IdR _ 
        g
      
      where
        natu : η  c  ⋆⟨ C  G  F  g    g ⋆⟨ C  η  G  d  
        natu = sym (η .N-hom _)
    adj→adj' .adjIso {c = c} {d} .leftInv f
      = F  η  c  ⋆⟨ C  G  f   ⋆⟨ D  ε  d 
      ≡⟨ cong  v  v ⋆⟨ D  ε  d ) (F .F-seq _ _) 
        F  η  c   ⋆⟨ D  F  G  f   ⋆⟨ D  ε  d 
      ≡⟨ D .⋆Assoc _ _ _ 
        F  η  c   ⋆⟨ D  (F  G  f   ⋆⟨ D  ε  d )
      -- apply naturality
      ≡⟨ lCatWhisker {C = D} _ _ _ natu 
        F  η  c   ⋆⟨ D  (ε  F  c   ⋆⟨ D  f)
      ≡⟨ sym (D .⋆Assoc _ _ _) 
        F  η  c   ⋆⟨ D  ε  F  c   ⋆⟨ D  f
      -- apply triangle identity
      ≡⟨ rCatWhisker {C = D} _ _ _ δ₁ 
        D .id ⋆⟨ D  f
      ≡⟨ D .⋆IdL _ 
        f
      
      where
        natu : F  G  f   ⋆⟨ D  ε  d   ε  F  c   ⋆⟨ D  f
        natu = ε .N-hom _
    -- follows directly from functoriality
    adj→adj' .adjNatInD {c = c} f k = cong  v  η  c  ⋆⟨ C  v) (G .F-seq _ _)  (sym (C .⋆Assoc _ _ _))
    adj→adj' .adjNatInC {d = d} g h = cong  v  v ⋆⟨ D  ε  d ) (F .F-seq _ _)  D .⋆Assoc _ _ _