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Abstract6

We study two kinds of containers for data types with symmetries in homotopy type theory, and7

clarify their relationship by introducing the intermediate notion of action containers. Quotient8

containers are set-valued containers with groups of permissible permutations of positions, interpreted9

as analytic functors on the category of sets. Symmetric containers encode symmetries in a groupoid10

of shapes, and are interpreted accordingly as polynomial functors on the 2-category of groupoids.11

Action containers are endowed with groups that act on their positions, with morphisms preserving12

the actions. We show that, as a category, action containers are equivalent to the free coproduct13

completion of a category of group actions. We derive that they model non-inductive single-variable14

strictly positive types in the sense of Abbott et al.: The category of action containers is closed15

under arbitrary (co)products and exponentiation with constants. We equip this category with the16

structure of a locally groupoidal 2-category, and prove that this corresponds to the full 2-subcategory17

of symmetric containers whose shapes have pointed connected components. This follows from the18

embedding of a 2-category of groups into the 2-category of groupoids, extending the delooping19

construction.20
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1 Introduction27

Containers are a syntax introduced by Abbott et al. [2] for modelling strictly positive28

data types in type theory. A container consists of a type of shapes and a type of positions29

associated to each shape. For example, the container of ordered lists consists of natural30

numbers n : N as shapes and finite ordinals Fin(n) as positions, the idea being that each list31

has a length n and Fin(n)-many locations that can hold data. Containers can be interpreted32

as polynomial endofunctors, the latter being the polymorphic data types that the containers33

represent. For example, the interpretation of the list container is the List functor.34

Containers form a category. Its morphisms are a syntax for polymorphic functions between35

data types, which can be interpreted as natural transformations between the corresponding36

polynomial endofunctors. This category is rich in structure; among other things it is37

cocartesian closed, is closed under the construction of initial algebras and terminal coalgebras,38

and admits a notion of derivative.39

Traditionally, the theory of containers is studied in Set-like categories. When interpreted40

in such categories, the data of containers may however be too restrictive to encode certain41

data types of interest. This is especially the case if one wants to account for symmetries,42

i.e. identify configurations of positions when one can turn into the other via the action of43

certain permutations. For example, one can represent ordered lists, but it is not possible to44

represent cyclic lists or finite multisets as a container.45
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Some efforts have been made to enhance the expressivity of containers to represent data46

types with symmetries. Abbott et al. [2] introduced quotient containers, which are containers47

in which the assignment of values to positions is invariant under a collection of permutations48

on positions. This is realized by requiring the presence of a subgroup of the symmetric group49

on positions, corresponding to the collection of admissible permutations. Quotient containers50

and their morphisms form a category, and their extension embeds them as a subcategory of51

set-endofunctors, this time targeting certain quotients of polynomial endofunctors, typically52

called analytic functors [12].53

In his master thesis, Gylterud [8] introduced symmetric containers, which consist of a54

collection of a shape and a family of positions, but this time the collection of shapes is taken55

to be a groupoid instead of a set, and positions are a set-valued functor over this groupoid.56

This means that the symmetries are encoded directly in the isomorphisms of the shape57

groupoid. From the perspective of (homotopy) type theory, symmetric containers correspond58

to set-bundles over homotopy-groupoids. They form a locally univalent 2-category, and can59

be interpreted as polynomial endofunctors on the 2-category of groupoids.60

Quotient and symmetric containers are two different ways to extend the expressivity of61

ordinary containers to include symmetries between positions. Our interest lies in understand-62

ing how these two approaches are related. To this end, we introduce an intermediate notion:63

action containers. An action container consists of a set of shapes and, for each shape s, a set64

of positions Ps and a group Gs acting on Ps. On one side, such containers generalize quotient65

containers, as the allowed permutations are determined by the action of an arbitrary group,66

and are not restricted to subgroups of the symmetric groups. On the other, they are a special67

case of symmetric containers: a Gs-action is a functor from Gs (as a 1-object groupoid) to68

Set, and summation of these functors over all shapes s yields a symmetric container.69

We describe a notion of morphisms of action containers, inspired by (pre)morphisms70

of quotient containers. Differently from the latter, morphisms of action containers have to71

explicitly preserve the structure of the groups acting on positions. Action containers form72

a category, and we show that this category is the free coproduct completion of a category73

of group actions in the form of the Fam-construction. From this we derive closure under74

arbitrary products and coproducts, as well as exponentials with constant domain.75

To compare action containers with the 2-category of symmetric containers, we define76

a notion of invertible 2-cell between these morphisms, enriching them to a 2-category.77

Crucially, we observe that this 2-category can again be modularly constructed starting from78

a 2-category of groups, group homomorphisms and conjugators [9] using the techniques of79

displayed bicategories [5]: we first define a 2-category of group actions, displayed over this80

2-category of groups, then repeat a 2-categorical version of the Fam-construction, presenting81

the 2-category of action containers as that of families of group actions.82

We construct a 2-functor between the 2-categories of action containers and symmetric83

containers; again in multiple steps. First we notice that the delooping of a group extends to84

a 2-functor B : Group→ hGpd between the 2-categories of groups and groupoids, and that85

this is locally a weak equivalence. We show, again using the displayed machinery, how to lift86

this to a local weak equivalence B̄ : Action→ SetBundle between the 2-categories of group87

actions and set bundles.88

The Fam-construction yields a 2-functor Fam(B̄) : Fam(Action) → Fam(SetBundle)89

between the 2-categories of families of group actions, i.e. action containers, and families of90

set bundles. We show that the action of Fam preserves local fully-faithfullness, but that91

preservation of local essential surjectivity requires an application of the axiom of choice.92

Finally, we describe a 2-functor Σ : Fam(SetBundle)→ SetBundle performing summations of93
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family of set bundles, implicitly employing the universal property of the Fam-construction94

as free coproduct completion. The latter does not seem to be fully faithful, however its95

restriction to set bundles with connected bases is. This implies that the composite 2-functor96

Σ ◦ Fam(B̄) : Fam(Action) → SetBundle is locally fully faithful. This means that, not97

only do action containers correspond to certain symmetric containers, but morphisms of98

action containers are a well-behaved class of morphisms of action containers: conjugators99

between action container morphisms represent exactly identifications of symmetric container100

morphisms.101

We formalize our results using the Agda proof assistant, building on top of the agda/cubical102

library [15]. Our code is freely available at https://github.com/phijor/cubical-containers.103

A final version of this paper will have each result linked to the corresponding formalization104

in the code.105

1.1 Notation and Background106

Our work takes place in homotopy type theory, which is a well-suited foundational framework107

for our investigation. This is mostly due to the fact that we can work with syntethic108

groupoids, i.e. h-groupoids, in place of categorical groupoids, which considerably simplify the109

described constructions. We take full advantage of higher inductive types (HITs) to define110

mere existence via propositional truncation, set quotients and the delooping of groups. In111

this short section, we recall some basic terminology and fix the notation we use. More details112

can be found in the HoTT book [16].113

We write
∏
a:AB(a) for dependent products, A → B for their non-dependent variant,114

and
∑
a:AB(a) for dependent sums. Two-argument function application is written f(a, b) or,115

to reduce visual clutter, fa(b). Most of our constructions are universe-polymorphic, but for116

the sake of readability in the paper we use only the two lowest universe of types, denoted U .117

The type of h-sets is hSet, the type of h-groupoids is hGpd. We will often simply talk about118

sets and groupoids instead of h-sets and h-groupoids. We suppress proofs of truncation level119

when they are routine. For example,
∑

-types are n-types when their projections are and120 ∏
-types when their codomain is. The type of natural numbers is N and the finite ordinals121

Fin : N → hSet. For x, y : A, we denote their type of identifications by x = y, and call122

p : x = y either an identification or a path. Given a family B over A and terms x′ : B(x),123

y′ : B(y), we write x′ =B(p) y
′ for the type of dependent paths, or x′ =p y

′ when B can124

be inferred. Defining equalities are denoted x := y; for judgmentally equal x and y, we125

write x .= y. For functions into Σ-types, we use binders to name the projections: given126

f : X →
∑
a:AB(a), we write λx. (a(x), b(x)) or λx. (ax, bx) for a := fst ◦f and b := snd ◦f .127

The propositional truncation of a type X is ∥X∥91, the set truncation of X is ∥X∥0. Notice128

that there are two competing conventions for indexing truncation levels: (-2)-based (HoTT-129

book style) and 0-based (Voevodsky-style). Our formalization, done in Cubical Agda, is130

0-based, yet this paper, which is written in HoTT-book style, starts indexing at -2. Whenever131

possible however, we will explicitly use the words “proposition”, “set” and “groupoid” to132

avoid confusion. Mere existential quantification is defined as ∃a:AB(a) := ∥
∑
a:AB(a)∥91.133

The set quotient of a type A by a (non-necessarily propositional) relation R is A/R. The134

circle type is S1. Propositional and set truncations, as well as set quotients and the circle,135

are defined in HoTT as higher inductive type. The main HIT employed in this paper is the136

delooping of a group, introduced in Section 2.3.137

Given a pointed type (X,x0), its loop space is Ω(X,x0) := (x0 = x0), while its fundemental138

group is its set truncation π1(X,x0) := ∥Ω(X,x0)∥0. The connected components of a type139

X are collected in its set truncation π0(X) := ∥X∥0. We say that X is connected if ∥X∥0 is140

https://github.com/phijor/cubical-containers


4 Data Types with Symmetries via Action Containers

contractible.141

For groups G and H we denote the type of group homomorphisms by G .→ H. We142

denote the type of subgroup inclusions by G ≤ H :=
∑

(ι : G .→ H). isInjective(ι). The143

symmetric group of a set X is S(X) := Ω(hSet, X). The unit of this group is reflexivity144

refl, multiplication is composition of paths p · q, inverse is path reversal. Remember that,145

by univalence, S(X) is equivalent to the type of equivalences X ≃ X. We abbreviate146

S(n) := S(Fin(n)). An action of G on a set X is a group homomorphism σ : G .→ S(X).147

For g : G, we denote transport(σ(g)) : X → X simply by σ(g), and apply it to some148

x : X either as σ(g, x) or σg(x). The action is said to be faithful if σ is injective. The149

set of σ-orbits is denoted X/G, and defined as the set quotient of X by the orbit relation150

x ∼ y := ∃g : G. x = σg(y).151

1.2 2-Categories152

In this paper, we make use of higher categories in the form of (2,1)-categories. We follow153

the definitions of bicategorical concepts of [10], and adapt them to the setting of homotopy154

type theory: a 2-category C consist of a type of objects x, y : C0, 1-cells f, g : C1(x, y), and155

2-cells r, s : C2(f, g), with horizontal composition of 1- and 2-cells, and vertical composition156

of 2-cells, subject to suitable axioms. In particular, all types of 2-cells C2(f, g) are assumed157

to be h-sets. Composition of 1-cells is unital and associative up to a chosen identification,158

not just a 2-cell. All instances of 2-categories considered here are either locally strict (i.e.159

1-cells form sets) or locally univalent; such 2-categories always admit a unique coherently160

strict structure.161

If C is understood from context, we write f, g : x→ y for f, g : C1(x, y), and r : f ⇒ g162

for r : C2(f, g). We compose cells in diagrammatic order. Juxtaposition denotes horizontal163

composition, whereas vertical composition of 2-cells is denoted r • s.164

Let f, g : x → y. Under vertical composition, 2-cells C2(f, g) form the morphisms of165

an (ordinary) category, called the local category at x and y, denoted by its type of objects166

C1(x, y). If a proposition P holds for all local categories of a 2-category, we say that it is167

locally P . A (2,1)-category is thus defined to be a locally groupoidal 2-category, that is, one168

for which 2-cells in each local category are invertible. A 2-category is locally thin if C2(f, g)169

is a proposition for each pair of 1-cells f, g : C1(x, y), i.e. there is at most one 2-cell from170

f to g. Any ordinary category C forms a locally thin 2-category: 2-cells are homotopies of171

1-cells, C2(f, g) := (f = g).172

We use the machinery of displayed bicategories [5] to define complex 2-categories from173

modular gadgets. A displayed 2-category D over a base 2-category C consists of a fam-174

ily of objects D0 : C0 → U , a family of 1-cells D1 : C1(x, y) → D0(x) → D0(y) → U ,175

and a family of 2-cells D2 : C2(f, g) → D1(f ; x̄, ȳ) → D1(g; x̄, ȳ) → U , satisfying de-176

pendent analogues of the 2-category axioms. If unambiguous, we write f̄ : x̄ →f ȳ for177

f̄ : D1(f ; x̄, ȳ), as well as r̄ : f̄ ⇒r ḡ for r̄ : D2(r; f̄ , ḡ). The total 2-category of D over178

C is denoted
∫

D, and is a 2-categorical analouge of
∑

-types: objects are pairs of ob-179

jects
∫

0D :=
∑
x:C0

D0(x), 1-cells are
∫

1D
(
(x, x̄), (y, ȳ)

)
:=

∑
f :C1(x,y) D1(f ; ȳ, x̄), and 2-cells180 ∫

2D
(
(f, f̄), (g, ḡ)

)
:=

∑
r:C2(f,g) D2(r; f̄ , ḡ). To highlight the dependency on C, we sometimes181

write
∫

C D or even
∫
x:C D(x).182

We go between 2-categories via 2-functors. For a 2-functor F : C → D we denote its183

action on objects, 1-, and 2-cells by F0, F1 and F2 respectively. They are assumed to strictly184

preserve composition and units of 1-cells, that is up to an identification of 1-cells in the185

codomain. The actions on 1- and 2-cells define functors of local categories, and we call F186

locally P if all local functors satisfy a proposition P .187
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We define a notion of displayed 2-functor F̄ : C̄ →F D̄ between 2-categories displayed188

over C and D and a (base) 2-functor F : C→ D. To cells in C̄ it assigns cells in D̄ displayed189

over the image of F : it consists of assignments of objects F̄0 : C̄0(x)→ D̄0(F0(x)), 1-cells F̄1 :190

C̄1(f ; x̄, ȳ)→ D̄1(F1(f); F̄0(x̄), F̄0(ȳ)) and 2-cells F̄2 : C̄2(r; f̄ , ḡ)→ D̄2(F2(r); F̄1(f̄), F̄1(ḡ)),191

satisfying dependent analogues of the 2-functor axioms. A displayed 2-functor induces a192

2-functor between total 2-categories, denoted
∫
F̄ :

∫
C→

∫
D.193

The 2-category of h-groupoids is denoted by hGpd. Its 1-cells are functions between the194

underlying types and 2-cells are homotopies between functions.195

2 Quotient and Symmetric Containers196

In this section we recall the notions of quotient and symmetric containers, as well as their197

morphisms.198

2.1 Quotient Containers199

Quotient containers were introduced by Abbott et al. [2] as a way to add symmetries to200

containers in an extensional type theory with quotient types. Here we state their definition201

in HoTT.202

▶ Definition 1. A quotient container (S ▷ P/G) consists of a set of shapes S, a family of203

positions P : S → hSet and symmetry groups ιs : Gs ≤ S(Ps) for each s : S.204

Each group element g : Gs defines a path ιs(g) : Ps = Ps. By transport, this induces a map205

Ps → Ps; in the remainder, we will identify g and this map.206

▶ Example 2. The quotient container of unordered n-tuples Un := (1 ▷ Fin(n)/S(n)) has a207

single shape, and over it positions Fin(n). On these n positions, the full group of permutations208

S(Fin(n)) acts as its symmetry group. We call U1 the identity container ; it has a single209

shape, on which the trivial group acts.210

Like an ordinary container, a quotient container defines an endofunctor on the category211

of sets, called its extension. Whereas for ordinary containers this is a polynomial functor, for212

quotient containers it is analytic [12], i.e. a sum of quotients of representables:213

▶ Definition 3 (extension of quotient containers). The extension of (S ▷ P/G) is the map214

JS ▷ P/GK/ : hSet→ hSet given by215

JS ▷ P/GK/(X) :=
∑
s:S

Ps → X

∼s
, v ∼s w := ∃g:Gs v = w ◦ g216

▶ Example 4 (unordered n-tuples). The extension of Un is the type of unordered n-tuples:217

JUnK/(X) :=
∑

:1
(Fin(n)→ X)/∼ = Xn/∼S(n)218

where x ∼S(n) y if and only if xi = yσ(i) for some permutation σ : S(n). When n = 1, we219

obtain the identity function JU1K/X = X.220

▶ Definition 5. A premorphism of quotient containers, (u ▷ f) : (S ▷ P/G) ⇀ (T ▷ Q/H)221

consists of a map of shapes u : S → T , a map of positions f :
∏
s:S Qus → Ps, and a proof222

that f preserves symmetries,
∏
s:S

∏
g:Gs ∃h:Hus g ◦ fs = fs ◦ h.223
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Premorphisms compose by composition of their maps of shapes and positions. That the224

composite preserves symmetries is seen as follows: That f preserves symmetric says that for225

any s : S, g : Gs, there merely exists some h : Hus such that226

Qus Ps

Qus Ps

fs

fs

h g227

commutes. Thus, symmetries are preserved by horizontally pasting such squares.228

Morphisms of quotient containers are defined up to permutation of positions, i.e. as229

equivalence classes of premorphisms.230

▶ Definition 6. The type of morphisms F → G of quotient containers is the set quotient of231

the type of premorphisms F ⇀ G by the relation (defined by path induction)232

(u ▷ f) ≈ (u′ ▷ f ′) :=
∑
p:u=u′

f ≈′p f ′, f ≈′reflu f
′ :=

∏
s:S
∃
h:Hus

fs = f ′s ◦ h233

Whenever u .= u′, this relation posits the mere existence of a triangle filler234

(u ▷ f) ≈ (u ▷ f ′) ≃
Qus Qus

Ps

∃(h:Hus)

fs f ′
s

235

▶ Definition 7. Quotient containers and their morphisms form a category QuotCont.236

Extension of quotient containers is a functor J−K/ : QuotCont → Endo(hSet), which is237

full and faithful. Each premorphism (u ▷ f) : F ⇀ G defines a natural transformation238

Ju ▷ fK/ : JF K/ ⇒ JGK/, with component at X : hSet a map239

Ju ▷ fKX/ :
∑
s:S

(Ps → X/∼s)→
∑
t:T

(Qt → X/∼t)240

defined by induction on set quotients as Ju ▷ fKX/ (s, [ℓ]) := (us, [ℓ ◦ f ]). This is well-defined241

on morphisms of quotient containers: If (u ▷ f) ≈ (u′ ▷ f ′) then Ju ▷ fKX/ = Ju′ ▷ f ′KX/ .242

2.2 Symmetric Containers243

Symmetric containers were introduced by Gylterud [8] as a way of defining polynomial244

functors between categorical groupoids. In this section we reformulate their definition in the245

language of HoTT using homotopy groupoids instead.246

▶ Definition 8. A symmetric container (S ◁ P ) consists of shapes S : hGpd and a family of247

positions P : S → hSet.248

▶ Definition 9. A morphism of symmetric containers (u ◁ f) : (S ◁ P )→ (T ◁ Q) consists of249

a map of shapes u : S → T and a family f :
∏
s:S Qus → Ps of maps of positions.250

In a (homotopy) type-theoretic setting, the types of morphisms C(x, y) of a category C are251

understood to be h-sets. Morphisms of symmetric containers, however, form h-groupoids.1252

1 Observe that (S ◁ 0) → (T ◁ 0) ≃ (S → T ), which is an h-groupoid since T is.
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▶ Definition 10. The 2-category SymmCont has as objects symmetric containers, as 1-cells253

morphisms of symmetric containers, and as 2-cells identifications of such morphisms.254

▶ Definition 11. The extension of a symmetric container (S ◁P ) is a function of h-groupoids,255

JS ◁ P K : hGpd→ hGpd, defined as256

JS ◁ P K(X) :=
∑
s:S

Ps → X257

Extension of symmetric containers defines a 2-functor J−K : Symm → Endo(hGpd).258

For any morphism (u ◁ f) : (S ◁ P ) → (T ◁ Q), there is a pseudonatural transformation259

Ju ◁ fK : JS ◁ P K⇒ JT ◁ QK with components given by precomposition260

Ju ◁ fKX :
∑
s:S

(Ps → X)→
∑
t:T

(Qt → X) Ju ◁ fKX(s, v) := (us,Qus
fs−→ Ps

v−→ X)261

This 2-functor is locally an equivalence of 2-categories [8, Theorem 2.2.1], thus embeds262

symmetric containers into endofunctors of groupoids.263

One advantage of internalizing symmetric containers as h-groupoids is that we are free264

to define groupoids of shapes as higher inductive types, encoding the desired symmetries265

directly in their constructors. For example, cyclic lists can be described using the symmetries266

of the circle, S1:267

▶ Example 12. The symmetric container of cyclic lists, Cyc, is defined as follows:268

Shapes are pairs N× S1. The first component contains the length of the list. The second269

has a single point, base : S1, but its loops base = base are going to induce cyclic shifts on270

positions.271

Positions Sh : N× S1 → hSet are defined by induction on the circle S1. Over the point,272

we have n distinct positions, Sh(n, base) := Fin(n). On the non-trivial path, Sh identifies273

positions by a cyclic shift, Sh(refln, loop) := shift. Here, shift : Fin(n) = Fin(n) is the path274

obtained by univalence from the successor equivalence275

suc : Fin(n) ≃ Fin(n)276

suc(k) := (k + 1) mod n277

Since S1 is freely generated by a single non-trivial path, Sh identifies positions by arbitrary278

cyclic shifts. Let v := (x, y, z), w := (y, z, x) terms of type Fin(3) → X. We are going279

to exhibit a path
(
(3, base), v

)
=

(
(3, base), w) in JCycK(X). Since JCycK(X) is an iterated280

Σ-type, such a path is given by a triple of paths p : 3 = 3, q : base = base, and r : v =q w.281

Set p := refl and q := loop · loop. The path r is dependent over q, and it suffices to give a282

path v = w ◦ shift ◦ shift. But we see that the right side computes to (x, y, z), which is v.283

2.3 Lifting Quotient Containers284

The data of both quotient and symmetric containers define semantics for datatypes with285

symmetries. As we will see, it is possible to see any quotient container as a symmetric one.286

However, this analogy does not extend to (polymorphic) functions between such types, since287

it is generally not possible to lift a morphism of quotient containers to one of symmetric288

containers, as the former truncate evidence on how symmetries are preserved.289

In order to create a symmetric container from a quotient container, we have to come up290

with a groupoid of shapes that encodes the symmetries present in the quotient container.291

We borrow an idea from algebraic topology: any group G gives rise to a unique pointed,292
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connected groupoid (BG, •) such that Ω(BG, •) ≃ G, called its delooping. This type is an293

instance of an Eilenberg-MacLane space, i.e. a type with a single non-trivial homotopy group.294

Eilenberg-MacLane spaces have been studied in HoTT [13], and our presentation of BG295

coincides with K(G, 1) there. We define BG as a higher inductive type with constructors296

• : BG
g : G

loop g : • = •
g, h : G

loop-comp(g, h) : loop g · looph = loop gh
297

plus one constructor asserting that BG is an h-groupoid. Its recursion principle states that,298

to define a map BG→ X for some groupoid X, it suffices to give a point x0 : X and a group299

homomorphism φ : G .→ Ω (X,x0): a map f : BG → X is then determined by f(•) := x0300

and f(loop g) := φ(g). The recursor characterizes functions out of BG, in the following sense:301

▶ Proposition 13. The recursor is an equivalence (
∑
x0:X G

.→ Ω (X,x0)) ≃ (BG→ X), for302

X a groupoid. When X is a set, we have
∑
x0:X G→ x0 = x0 ≃ (BG→ X).303

The dependent eliminator lets us define sections
∏
x:BGB(x) of families B : BG→ hGpd by304

providing a point b0 : B(•), dependent paths φ :
∏
g:G(b0 =B(loop g) b0), and a coherence305

condition for composition of dependent paths: for all g, h : G, there needs to be a path from306

φ(g) · φ(h) to φ(gh), dependent over loop-comp(g, h).307

Note that loop-comp : G → Ω(BG, •) preserves the product of G, hence is a mor-308

phism of groups. This lets us derive other expected coherences, such as loop 1G = refl and309

loop (g91) = (loop g)91.310

Delooping acts on group homomorphisms:311

▶ Definition 14. Any group homomorphism φ : G → H induces a map of groupoids312

Bφ : BG→ BH, defined by induction:313

Bφ(•) := • Bφ(loop g) := loopφ(g)314

A G-action is a particular homomorphism, so the above defines a type family BG→ hSet.315

Let us spell this out:316

▶ Definition 15 (associated bundle). Let G act on a set X via σ : G .→ S(X). Its associated317

bundle B̄σ : BG→ hSet is defined by recursion on BG as318

B̄σ(•) := X, B̄σ(loop g) := σ(g),319

Note that for each g : G, σ(g) is a path X = X.320

In the context of quotient containers, we are dealing with faithful group actions, that is321

actions of G on X such that σ : G→ S(X) is an embedding. In this case, the associated322

bundle is an embedding on its path spaces, i.e. a set-truncated function [16, 7.6.1]:323

▶ Proposition 16. If σ : G ↪→ S(X) acts faithfully, the fibers of B̄σ : BG→ hSet are sets.324

Proof. By [16, Lemma 7.6.2], B̄σ has set-valued fibers iff cong B̄σ : x = y → B̄σ(x) = B̄σ(y)325

is an embedding for all x, y : BG. This is a proposition, therefore it suffices to show this at326

x
.= y

.= •. By the universal property of BG, loop : G→ • = • is an equivalence, and327

• = • G

X = X

loop91

cong B̄σ σ
328

commutes, hence cong B̄σ is an embedding, as desired. ◀329
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For any quotient container we define a groupoid that is the collection of its delooped330

symmetry groups:331

▶ Definition 17. The delooping of a quotient container (S ▷P/G) is the symmetric container332

B(S ▷ P/G) := (S ◁P) consisting of333

shapes S :=
∑
s:S BGs, and334

positions P :
∑
s:S BGs → hSet, P(s,−) := B̄(ιs),335

where ιs is the inclusion of symmetry groups Gs ↪→ S(X).336

We think of the shapes S as consisting of the points of S, with loops given by elements in337

Gs freely added. Indeed, if we compute its connected components, we see that338

π0(S) ≃ ∥
∑
s:S BGs∥0 ≃

∑
s:S∥BGs∥0 ≃ S339

where the last step follows from connectivity of BGs. Similarly, we compute its first340

fundamental group: S is a set and s = s is contractible, thus341

π1(S, (s, x)) ≃
∑
p:s=s(x =p x) ≃ (x = x) ≃ π1(BGs, x) ≃ Gs342

Like in Proposition 16, the family P is an embedding on paths:343

▶ Proposition 18. The family P : S→ hSet is a set-truncated function.344

Proof. For each X : hSet, we have fiberP X ≃
∑
s:S fiberB̄ιs X, which is a set: S is a set,345

and since we assume ιs to be faithful, so are the fibers of B̄ιs by Proposition 16. ◀346

This way of obtaining a symmetric container is in some sense conservative: when comparing347

the associated extensions (and set-truncating that of the symmetric container), we see that348

they are the same function of sets:349

▶ Theorem 19. For a quotient container Q and X : hSet, there is an equivalence of sets350

∥ JBQK(X) ∥0 ≃ JQK/(X)351

Proof. Let us unfold the definitions of J−K and B,352

∥ JBQK(X) ∥0 ≃ ∥
∑
s:S

∑
x:BGs

B̄ιs(x)→ X ∥0 (1)353

and, as S is a set, move the truncation under the sum354

≃
∑
s:S
∥

∑
x:BGs

B̄ιs(x)→ X ∥0 (2)355

Notice that Gs acts on the function type Ps → X via precomposition, and that its associated
bundle is (B̄ιs(−)→ X) : BGs → hSet. By Lemma 20 below, the connected components of
this bundle correspond to orbits of the action,356

≃
∑
s:S

(Ps → X)/Gs (3)357

which is exactly how extension of a quotient container is defined:358

≃
∑
s:S

(Ps → X)/∼s ≃ JQK/(X) ◀359
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▶ Lemma 20. Let σ a G-action on X. The connected components of the total space of its360

associated bundle and σ-orbits are in bijection, that is ∥
∑
x:BG B̄σ(x) ∥0 ≃ X/G.361

Proof. Let us define the left-to-right direction. Since the codomain is a set, it suffices to362

give f :
∏
x:BG B̄σ(x) → X/G by induction on BG. Let f(•) := [−] : X → X/G the363

surjection onto the quotient. It remains to show that this is well-defined on loops, which364

reduces to
∏
g:G

∏
x:X [x] = [σg(x)]. This holds since x ∼ σg(x) by definition of the orbit365

relation. The inverse is defined by recursion on the set quotient X/G and maps x : X to366

(•, x) :
∑
x:BG B̄σ(x). From p : x = σg(y), one constructs a path (•, x) = (•, y): the first367

component is given by loop g, the second as dependent path from p. ◀368

Theorem 19 states that, as functions between types, the diagram369

SymmCont (hGpd→ hGpd)

QuotCont (hSet→ hSet)

B

J−K

λF.∥F (−)∥0

J−K/

370

commutes. We are interested to see whether this generalizes to a natural isomorphism of371

functors. To do so, we would have to suitably extend B to a functor. Unfortunately, it is not372

clear how to define its action on morphisms of quotient containers. Given a premorphism373

(u ▷ f) : (S ▷ P/G) ⇀ (T ▷ Q/H), we would have to provide a morphism of shapes374 ∑
s:S BGs →

∑
t:T BHt375

(s, x) 7→ (us, ?)376

To define ? : BGs → BHus, it would suffice to provide a morphism of groups Gs → Hus.377

However, we are not given this information: we know that f preserves symmetries, but this378

only tells us that, for each g : Gs, there is merely some h : Hus. Even if we were given an379

explicit function Gs → Hus, it would not have to be a group homomorphism. In fact, it is380

easy to construct counterexamples:381

▶ Example 21. Consider (id ▷!) : U1 ⇀ U2. The terminal map ! : 2→ 1 trivially preserves382

symmetries: the diagram383

2 1

2 1

!

!

φg g384

commutes for any choice of φg, in particular for φ : S(1)→ S(2), φ− := swap, which is not385

a group homomorphism.386

Since morphisms of quotient containers are equivalence classes, it might be possible to387

find another premorphism in the same class for which this assignment is a morphism of388

groups. In fact, in the above example one could pick φg := id, which clearly is. Doing so389

however for arbitrary symmetry groups seems constructively impossible, without invoking390

some form of choice principle.391

Instead, we will be looking to enhance the definition of quotient containers to include the392

necessary information, and investigate their relation to symmetric containers more closely.393
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3 Action Containers394

In this section we define action containers and assemble them into a 1-category. Morphisms395

in this category are akin to premorphisms of quotient containers. In particular, they are not396

quotiented by a relation on positions. Later, in Section 4, we enrich this category to obtain a397

(2,1)-category whose 2-cells capture this relation.398

Different from quotient containers, the symmetries of action containers are not limited to399

subgroups of permutations of positions. Instead, an action container has, for each shape, a400

chosen group acting on the set of positions. This lets us flexibly introduce symmetries, e.g.401

by letting the integers under addition act on a finite set, instead of having to identify the402

image of this action, see the forthcoming Example 23.403

The category of action containers admits a number of limits and colimits, and we will404

derive the usual container algebra of products and coproducts from a presentation of this405

category as a category of families in Section 3.1.406

▶ Definition 22. An action container (S ▷ P ◁σ G) consists of a set of shapes S, a family of407

positions P : S → hSet and group actions σs : Gs → S(Ps) for each s : S.408

In the following, the word “container” refers to action containers; other kinds of containers409

are qualified explicitly. In Example 12, we defined cyclic lists as a symmetric container in410

which loops of the circle act by cyclic shifts. Since Ω(S1) = Z, we are inspired to define a411

container of cyclic lists by means of a Z-action:412

▶ Example 23 (cyclic lists as an action container). The container Cyc := (N ▷ Fin ◁σZ) has Z413

acting on Fin(n) as follows: for each n, let σn : Z→ S(n), σn(k) := λℓ. (ℓ+ k) mod n. Note414

that this action is not faithful: the kernel of σn consists of the integers nZ = {nk | k ∈ Z }.415

In general, it is easy to define Z-actions: Z is the free group on one generator, thus it416

suffices to define the action of 1 : Z. In the example of cyclic lists, it suffices to define the417

cyclic shift by one position, σn(1) := λℓ. (ℓ + 1) mod n. This is impossible for quotient418

containers with finitely many positions: Z is simply never a subgroup of finite symmetry419

groups.420

Unlike premorphisms of quotient containers, morphism of action containers are required421

to preserve the full structure of containers, including their symmetries:422

▶ Definition 24. A morphism of action containers (u ▷ f ◁ φ) : (S ▷ P ◁σ G)→ (T ▷ Q ◁τ H)423

consists of a map of shapes u : S → T , a map of positions f :
∏
s:S Qus → Ps, a family of424

group homomorphisms φ :
∏
s:S Gs

.→ Hus, and a proof that f is equivariant: for all s : S425

and g : Gs a commutative square426

Qus Ps

Qus Ps

fs

fs

τus(φs(g)) σs(g)427

Calling f equivariant is justified: each fs is a morphism between Gs-sets (Ps, σs) and428

(Qus, τus ◦ φs) [14, Definition 1.2]. In Section 4, we explain how this notion of morphism429

arises naturally from a category of group actions and equivariant maps between them.430

▶ Definition 25. Action containers and their morphisms form a category ActCont.431
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3.1 Algebra of action containers432

Like other categories of containers, action containers are closed under a number of construc-433

tions. In particular, ActCont has all products and coproducts. To show this, we could define434

each of them by hand. In that process, we would have to carefully track the variance of parts435

of a container. For example, the binary product of containers is a product of shapes and436

symmetry groups, but a (pointwise) coproduct of families of positions.437

Instead, we opt to present ActCont as a category of families of group actions, from which438

(co)limits are easy to read off. First, we define a category of group actions. It is a version of439

the category of G-sets (for a fixed group G), in which equivariant maps are permitted to go440

between sets with actions of different groups.441

▶ Definition 26. We denote by Action the category of group actions and equivariant maps.442

It is obtained as the total category of the following category displayed over Group× hSetop:443

Given objects G : Group0 and X : hSetop
0 , displayed objects are G-actions on X, i.e.444

Action0(G,X) := (G .→ S(X)).445

Over a pair of 1-cells (φ : G .→ H), (f : X ← Y ) and actions σ : Action0(G,X)446

and τ : Action0(H,Y ), the type of displayed morphisms is the proposition that f is447

equivariant over φ: let isEquivariantφ,f (σ, τ) :=
∏
g:G σ(g) ◦ f = f ◦ τ(φg) and define448

Action1((φ, f);σ, τ) := isEquivariantφ,f (σ, τ).449

Diagrammatically, a pair of 1-cells φ and f is equivariant if for all g : G,450

X Y

X Y

f

f

σ(g) τ(φg)451

commutes. Equivariant maps compose by horizontal pasting of such squares.452

Observe how over each shape, the data of a container (S ▷ P ◁σ G) is exactly that of a453

group action: for any s : S, Gs acts on Ps via σs. Thus, on objects, the category of action454

containers consists of “families” of group actions. Let us ensure that this analogy extends to455

morphisms of this category.456

Recall that for any category C, its free coproduct completion is the category of families457

Fam(C) [3, §2]. Its objects are families
∑
I:hSet I → C0, morphisms are families of maps458

between them.459

▶ Theorem 27. The category of action containers is equivalent to families of group actions.460

In particular, the functor F : ActCont → Fam(Action) with action on objects given by461

F (S ▷ P ◁σ G) := (S, λs. (Gs, Ps, σs)) is an equivalence of categories.462

▶ Proposition 28. Action has K-indexed products for all sets K. In particular, the trivial463

group acting on the singleton set is an initial object.464

▶ Corollary 29. Action containers are closed under products and coproducts.465

Proof. Fam(C) is the free coproduct completion of any category C, thus ActCont is closed466

under coproducts. Similarly, Action is closed under products (Proposition 28), thus the same467

is true for families over it ([3, 2.11]). ◀468

Like ordinary containers [1, Proposition 3.9], constant action containers are exponentiable:469
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▶ Proposition 30 (constant containers are exponentiable). The constant container of a set470

K is kK := (K ▷ 0 ◁id 1). Given a container C = (S ▷ P ◁σ G), the exponential container471

CK := (S∗ ▷ P ∗ ◁σ∗
G∗) is defined to have472

shapes S∗ := K → S,473

positions P ∗f :=
∑
k:K Pfk,474

symmetries G∗f :=
∏
k:K Gfk, and475

actions σ∗f : G∗f → S(P ∗f ) given by action of σ on the second component of P ∗f : for476

g :
∏
kGfk, let σ∗f (g) := λ(k, p). (k, σfk(g))477

Let f : K → S and k : K. The evaluation morphism ev : CK × kK → C is given by478

function application fk : S on shapes, pairing Pfk → 0 +
∑
k Pfk on positions, the projection479

homomorphisms 1×
∏
k′ Gfk′ .→ Gfk on symmetries.480

We believe that the above is an instance of constant exponentials in families: Let C have481

K-fold products for any set K; in particular an initial object 1C and binary products. It482

should be possible to show that the constant family (K,λk. 1C) is exponentiable.483

4 The 2-category of Action Containers484

In Section 2.3 we observed that quotient containers lift to symmetric containers, but that485

this does not apply to their morphisms. We defined the category of action containers to486

include the missing data, and are now ready to define an appropriate lifting:487

▶ Proposition 31. The delooping of a container (S ▷ P ◁σ G) is the symmetric container488

B(S ▷ P ◁σ G) := (
∑
s:S BGs ◁B̄σs). Each morphism (u▷f ◁φ) : (S ▷P ◁σG)→ (T ▷Q◁τ H)489

defines a morphism between deloopings, (φ̄ ◁ f̄) : B(S ▷ P ◁σ G)→ B(T ▷ Q ◁τ H).490

Proof. The family φ yields a map of shapes of type φ̄ :
∑
s:S BGs →

∑
t:T BHt, defined as491

φ̄(s, x) := (us,Bφs(x)). The map on positions has (uncurried) type492

f̄ :
∏
s:S

∏
x:BGs B̄τus(Bφ(x))→ B̄σs(x)493

and is defined by induction on x : BGs. On the point, let f̄(s, •) := fs : Qus → Ps. It494

remains to show that f̄ is well-defined on loops in BGs. For all g, we have to provide a495

dependent path fs =F (loop g) fs where F (x) = B̄τus(Bφ(x)) → B̄σs(x). By [16, Lemma496

2.9.6], this is equivalent to giving paths
∏
q:Qus σs(fs(q)) = fs((τusφs g) q), which we obtain497

from the proof that fs is equivariant. ◀498

As noted in Section 2.2, symmetric containers do not form an ordinary category, but a499

2-category. Thus, in order to show that the above construction is functorial, we must first500

enrich action containers by a type of 2-cells, defining a 2-category. We do so by pulling back501

2-cells of symmetric containers, and will see that this corresponds to the quotiented sets of502

quotient container morphisms.503

We split the construction of the 2-functor taking action containers into symmetric504

containers into smaller steps. As in Section 3, we first seek to understand the problem505

for a single action, before considering entire families of such. We observe that symmetric506

containers, from a homotopical viewpoint, are set-bundles over groupoids: both consist of507

some base B : hGpd together with a family of fibers F : B → hSet. Previously, we have508

seen that each action defines such a bundle, namely its associated bundle (Definition 15).509

We define 2-categories of actions (Action, Definition 37) and set bundles (Definition 38),510

and show that taking the associated bundle is a weak equivalence of their local categories511

(Theorem 42). This means that maps of actions are in 1-to-1 correspondence with functions512
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on their associated bundles. By changing our point of view, and seeing actions as single-513

shape containers and bundles as symmetric containers, this fully classifies morphisms of514

(single-shape) action containers in terms of morphisms of symmetric containers.515

To understand the case of many-shape containers, we give an analogue of the Fam-516

construction in 2-categories, and define the 2-category of action containers as ActCont :=517

Fam(Action). The objects and 1-cells of this category are exactly as in Definition 26. We518

unfold the type of 2-cells induced by this construction (Proposition 47) and show that it is519

closely related to the quotient on premorphisms of quotient containers (Definition 6). We520

observe that set-bundles are, in a suitable sense, closed under Σ-types, and we lift the functor521

B̄ : Action→ SetBundle to522

ActCont Fam(Action) Fam(SetBundle) SetBundle SymmCont= Fam(B̄) Σ =
523

finally establishing the connection between action containers and symmetric containers.524

4.1 A 2-category of groups525

We think of the type of h-groupoids, hGpd, as an internal notion of categorical groupoids:526

The 2-category hGpd has as objects h-groupoids, as morphisms functions of such, and as527

2-cells homotopies between them. Our goal is to extend the delooping to a 2-functor taking528

groups into hGpd in a way that characterizes 2-cells in hGpd. We thus equip the 1-category529

of groups with the structure of a (2,1)-category [9]:530

▶ Definition 32. The category Group of groups and group homomorphisms forms a (2,1)-531

category if equipped with the following 2-cells: Let φ,ψ : Group1(G,H). We say that r : H is532

a conjugator of φ and ψ if533

isConjugatorφ,ψ(h) :=
∏
g:G

φ(g)h = hψ(g)534

The 2-cells Group2(φ,ψ) :=
∑
r:H isConjugatorφ,ψ(r) compose vertically by multiplication in535

H. The horizontal composites of r : Group2(φ,ψ) and s : Group2(φ′, ψ′) is s · ψ′(r).536

Note that Group is not locally univalent: the identity type of group homomorphisms, φ = ψ,537

is a proposition, but the type of conjugators Group2(φ,ψ) is a set.538

▶ Lemma 33. Delooping extends to a 2-functor B : Group→ hGpd.539

Proof. A 1-cell φ : Group1(G,H) is sent to Bφ : BG → BH, as in Definition 14. On540

2-cells, let r : Group2(φ,ψ) a conjugator of homomorphisms. Delooping assigns a 2-cell541

Bφ = Bψ as follows: By function extensionality, it suffices to give Bφ(x) = Bψ(x) for any542

x : BG. By induction on x, we are left to give some q : • = • in BH such that for all g : G,543

loopφ(g) · q = q · loopψ(g). Choose q := loop r, and compute544

loopφ(g) · loop r = loopφ(g)r (∗)= loop rψ(g) = loop r · loopψ(g),545

where (∗) uses that r is a conjugator of φ and ψ. By a similar argument, one shows that546

these assignments preserve composition and identities. ◀547

Defined this way, we see that B preserves the local structure of Group:548

▶ Theorem 34. The functor B : Group→ hGpd is locally a weak equivalence of categories, i.e.549

for all groups G,H, there merely exists an inverse functor hGpd1(BG,BH)→ Group1(G,H).550
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Note that this cannot be strengthened to a full equivalence with explicit inverse: equivalence551

of categories preserves properties, but hGpd is by definition locally univalent, whereas Group552

is not.553

We prove Theorem 34 by showing that locally, B is fully faithful and essentially surjective.554

▶ Proposition 35. Delooping is a locally fully faithful functor: For groups G,H, the local555

functor B : Group1(G,H)→ hGpd1(BG,BH) is an equivalence of categories.556

Proof. Let φ,ψ : Group1(G,H). We establish a chain of equivalences between the sets of557

2-cells Group2(φ,ψ) and Bφ = Bψ. Starting from the definition,558

Group2(φ,ψ) ≃
∑
h:H

∏
g:G

φ(g)h = hψ(g)559

we apply the equivalence of groups, loop : H ≃ Ω BH twice560

≃
∑
h:H

∏
g:G

loopφ(g) · looph = looph · loopψ(g)561

≃
∑

ℓ:Ω BH

∏
g:G

loopφ(g) · ℓ = ℓ · loopψ(g)562

By the recursion principle, this is exactly a type of dependent functions out of BG, namely563

≃
∏
x:BG

Bφ(x) = Bψ(x)564

which, by function extensionality, is equivalent to565

≃ Bφ = Bψ566

One verifies that the map underlying this chain is that of Lemma 33. ◀567

▶ Proposition 36. Delooping is a locally essentially surjective functor.568

Proof. Let G,H groups, and f : BG→ BH a morphism of groupoids. We show the mere569

existence of some φ : Group1(G,H) together with an isomorphism Bφ ∼= f in the local570

category hGpd(BG,BH). By definition, morphisms in this category are homotopies, and it571

suffices to exhibit some h :
∏
x:BG Bφ(x) = f(x). Since BH is a connected groupoid, there572

merely exists a path p : f(•) = •, and conjugation by p induces an equivalence of groups,573

conj(p) : Ω(BH, f(•))→ Ω(BH, •)574

(q : f(•) = f(•)) 7→ p91 · q · p575

We define φ as the composite576

G
loop−−→ Ω(BG, •) cong(f)−−−−→ Ω(BH, f(•)) conj(p)−−−−→ Ω(BH, •) loop91

−−−−→ H577

By induction on x : BG, we show that
∏
x:BG Bφ(x) = f(x). On the point, this is given by578

p91 : • = f(•). On loops, we construct
∏
g:G Bφ(loop g) · p91 = p91 · f(loop g) as follows: let579

g : G, then Bφ(loop g) · p91 = loop (loop91 (p91 · f(loop g) · p)) · p91 = p91 · f(loop g) ◀580
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4.2 A 2-category of group actions581

Any G-action σ comes with an associated bundle, B̄σ : loopG→ hSet (Definition 15). Let582

us define 2-categories of actions and of set bundles, and show that “taking the associated583

bundle” is a functorial construction.584

▶ Definition 37 (2-category of actions). The 2-category Action of group actions displayed585

over Group consists of the following data:586

For each group G, objects are G-actions Action0(G) :=
∑
X:hSet G

.→ S(X).587

Over each group homomorphism φ : Group1(G,H), and actions (X,σ) : Action0(G),588

(Y, τ) : Action0(H), 1-cells are equivariant maps589

Action1(φ; (G, σ), (H, τ)) :=
∑

f :X←Y
isEquivariantφ,f (σ, τ),590

where isEquivariant is as in Definition 26.591

Let r : Group2(φ,ψ) a conjugator of group morphisms, and f : Action1(φ; (X,σ), (Y, τ))592

and g : Action1(ψ; (X,σ), (Y, τ)) equivariant maps. The type of 2-cells is the proposition593

that f and g agree up to a permutation of their domain induced by r,594

Action2(r; f, g) := (f = g ◦ τ(r))595

Since the displayed 2-cells of Action are propositions, verifying the axioms of a displayed596

2-category reduces to defining some identity- and composite 2-cells. The vertical composite597

p • q : f ⇒rs h of 2-cells p : f ⇒r g and q : g ⇒s h, is some identification f = h ◦ τ(rs). Since598

τ is an action, we define the composite as p • q :=
(
f

p= g ◦ τ(r) q= h ◦ τ(s) ◦ τ(r) = h ◦ τ(rs)
)
.599

Similarly, horizontal composition depends on 2-cells of Group being conjugators of group600

homomorphisms.601

▶ Definition 38 (set bundles). The 2-category of set bundles, displayed over hGpd, consists602

of the following data:603

Given G : hGpd0, set bundles on G are families SetBundle0(G) := G→ hSet.604

Over φ : hGpd1(G,H), morphisms from X : SetBundle(G) to Y : SetBundle(H) are605

dependent functions, SetBundle1(φ;X,Y ) :=
∏
g:G Y (φg)→ X(g)606

Let p : φ = ψ a 2-cell in hGpd, and f : SetBundle1(φ;X,Y ), g : SetBundle1(ψ;X,Y ).607

Displayed 2-cells of bundle morphisms are dependent identifications608

SetBundle2(p; f, g) := f =p g609

For an object (G,F ) : SetBundle0 in the total category, we call G the base of the bundle, and610

F its fibers.611

We are now ready to show that taking the bundle associated to an action is a well-behaved612

functorial operation. In particular, each equivariant map of actions induces a morphism613

between associated bundles:614

▶ Definition 39. Let σ : Action(G,X), τ : Action(H,Y ), and φ : Group1(G,H). Let615

f : Y ← X and p : isEquivariantφ,f (σ, τ). The bundle morphism associated to f has type616

B̄f :
∏
x:BG B̄τ(Bφx) → B̄σ(x), and is defined using the induction principle of BG. On617

the point it has type B̄f(•) : Y → X and is given by f . On a loop, we need to prove that618

B̄σ(loop g) ◦ f = f ◦ B̄τ(Bφ(loop g)) for all g : G. This reduces to σ(g) ◦ f = f ◦ τ(φ(g)),619

which is given by p.620
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Both Action and SetBundle are total categories, and B : Group → hGpd is a 2-functor621

between their bases. We thus define a 2-functor only on the displayed parts:622

▶ Definition 40. Taking associated bundles is a displayed 2-functor B̄ : Action→B SetBundle,623

consisting of the following data:624

On objects, it sends a G-action σ to its associated bundle B̄σ : BG→ hSet.625

On 1-cells, it associates to an equivariant map f : Action1(φ;σ, τ) its morphism of bundles626

B̄f : SetBundle1(Bφ; B̄σ, B̄τ).627

Over a 2-cell r : Group2(G,H), a proof p : Action2(r; f, g) .= (f = gτ(r)) is sent to a628

homotopy of bundle maps using the induction principle of BG.629

Both actions on 1- and 2-cells are defined by induction, and thus are equivalences in the630

sense of Proposition 13:631

▶ Lemma 41. The action on 1-cells B̄1 : Action1(φ;σ, τ) → SetBundle1(Bφ; B̄σ, B̄τ) and632

2-cells B̄2 : Action2(r; f, g)→ SetBundle2(Br; B̄f, B̄g) are equivalences of types.633

▶ Theorem 42. Taking associated bundles
∫

B̄ : Action → SetBundle is locally a weak634

equivalence.635

Proof. The total functor
∫

B̄ is locally fully faithful if
∫

2 B̄ is an equivalence, but this636

is a map on Σ-types built from B2 and B̄2, which are both equivalences by Theorem 34637

and Lemma 41. Local essential surjectivity is proved similarly to Proposition 36, and uses638

that B̄1 is an equivalence of types. ◀639

The above theorem implies that the local category SetBundle(BG,BH) is the Rezk completion640

of Action(G,H). As such the 2-category SetBundle should be the local univalent completion641

of Action in the sense of [5, Conjecture 5.6].642

4.3 A 2-categorical Fam-construction643

In the previous section we have seen how containers with a single action relate to set bundles.644

To lift this relationship to families of actions, we introduce a 2-categorical Fam-construction,645

again employing displayed machinery.646

▶ Definition 43 (2-category of families). Let C be a 2-category. The 2-category Fam(C)647

displayed over hSet consists of the following data:648

For J : hSet0, the displayed objects are families of C-objects, Fam0(J) := J → C0.649

Let J,K : hSet0 and families X : Fam0(J), Y : Fam0(K). The type of 1-cells displayed650

over some φ : hSet1(J,K) is Fam1(φ;X,Y ) :=
∏
j:J C1(Xj , Yφj).651

Displayed 2-cells are a family Fam2 : (φ = ψ)→ Fam1(φ,X, Y )→ Fam1(ψ,X, Y )→ U652

defined by path-induction on 2-cells in hSet: Fam2(reflφ; f, g) :=
∏
j:J C2(fj , gj)653

▶ Definition 44. Any 2-functor F : C→ D lifts to a functor Fam(F ) : Fam(C)→ Fam(D).654

This lifting is defined as a total functor Fam(F ) :
∫
J:hSet Fam(C)(J) →

∫
J:hSet Fam(D)(J)655

over the identity 2-functor on the base hSet.656

▶ Proposition 45. Lifting F : C → D to a 2-functor of families inherits the following657

properties:658

1. If F is locally fully-faithful, so is Fam(F ).659

2. If F is locally split-essentially surjective, so is Fam(F ).660

3. Assuming the axiom of choice for h-sets and that C is locally strict, if F is locally661

essentially surjective, so is Fam(F ).662
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Proof. Local fully-faithfulness follows from the pointwise definition of Fam2: if C2(f, g)663

is an equivalence, then so is Fam2(refl;−,−) .= λf, g.
∏
j C2(fj , gj). Local split essential664

surjectivity follows from a similar pointwise argument.665

In the non-split case, fix x, y : Fam0(C), and a 1-cell (ψ, g) : Fam0(x) → Fam0(y). It666

suffices to provide merely a family of sections, ∥
∏
j:J

∑
f F1(f) ∼= gj∥91; the conclusion follows667

using the induction principle of the truncation. The assumption that F is locally eso yields668 ∏
j:J∥

∑
f :C1(xj ,yψj) F1(f) ∼= gj∥91, and we use choice to move the truncation outward: J is a669

set, and so are C1(xj , yψj) (by local strictness of C) and local isomorphisms F1(f) ∼= gj . ◀670

4.4 Action containers as a 2-category of families671

As promised, we define the 2-category of action containers as a 2-category of families:672

▶ Definition 46 (2-category of action containers). The 2-category of action containers is that673

of families of actions, ActCont := Fam(Action).674

By algebra of Σ- and Π-types, we see that the objects and 1-cells coincide with those of the675

1-category of action containers (cf. Definition 25). In particular, we have for objects676

ActCont0
.=

∑
S:hSet

S →
( ∑
G:Group

∑
P :hSet

Action(G,X)
)

677

≃
∑
S:hSet

∑
P :S→hSet

∑
G:S→Group

∏
s:S

Action(Gs, Ps),678

and for 1-cells,679

ActCont1((S, λs. (Ps, Gs, σs)), (T, λt. (Qt, Ht, τt)))680

≃
∑

u:S→T

∏
s:S

∑
φ:Gs→Hus

∑
f :Ps←Qus

isEquivariantφ,f (σs, τus)681

Unfolding the newly added type of 2-cells, we recover a familiar condition:682

▶ Proposition 47. Let E,F : ActCont0 and denote E
.= (S, λs. (Ps, Gs, σs)) and F

.=683

(T, λt. (Qt, Ht, τt)). Let u : S → T and f, g : ActCont1(u;E,F ). The type of 2-cells684

ActCont2((u, f), (u, g)) is equivalent to685 ∏
s:S

∑
r:Hus

isConjugatorφs,ψs(r)× f
′
s = g′s ◦ τus(r),686

in which φ,ψ :
∏
sGs

.→ Hus and f ′, g′ :
∏
sQus → Ps are the maps of symmetries and687

positions of f and g, respectively.688

Note the occurrence of the proposition f ′s = g′s ◦ τus(r): it has already appeared in the689

definition of quotient container morphisms as a quotient of premorphisms (Definition 6). In690

[2, Definition 4.1] it is explained as a necessary condition for labellings of container maps691

to be defined upto quotient. In our case it is necessary to characterize homotopies between692

induced bundle maps B̄1(f ′s) and B̄1(g′s) (Lemma 41).693

Lifting the 2-functor B̄ : Action→ SetBundle to families, we immediately obtain the follow-694

ing characterization of 1-cells of action containers. Substituting ActCont .= Fam(SetBundle)695

and SymmCont .= SetBundle, we see:696

▶ Corollary 48. The lifting Fam(B̄) : ActCont→ Fam(SymmCont) is:697

1. locally fully faithful698
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2. assuming the axiom of choice, locally a weak equivalence699

Proof. The 2-category Action is locally strict, and B̄ locally a weak equivalence (Proposi-700

tion 16), thus is its lifting (Proposition 45). ◀701

This says that constructively, morphisms of action containers correspond to a subcategory of702

morphisms of (families of) symmetric containers. By using the axiom of choice, one sees that703

this construction indeed covers all such morphism.704

To connect action containers to symmetric ones, and not just families of the latter, note705

the following: Any family of set bundles (hence symmetric containers) can be combined706

into a single bundle: given (J, (λj. (Bj , Fj)) : Fam(SetBundle), we can consider the bundle of707

fibers over the sum of bases,
∑
j:J Bj . This construction defines a 2-functor:708

▶ Definition 49 (summation of set bundles). Summation of set bundles is a 2-functor709

Σ : Fam(SetBundle)→ SetBundle, with the following data710

1. Σ0(J, λj. (Bj , Fj)) consists of the base
∑
j:J Bj, and fibers λ(j, b). Fj(b).711

2. Σ1(u, λj. (φj , fj)) is a pair of a reindexing function (u, φ9) :
∑
J B →

∑
K C and a map712

of fibers, f9 :
∏

(j,b) Guj(φj(b))→ Fj(b).713

3. On 2-cells, it takes a family of identities of bundle maps to an identity of their sums via714

function extensionality: Σ2(reflu, λj. (rj , r̄j)) := funextλ(j, b). conguj,9b(rj), r̄j(b). ⌟715

The construction turning action containers into symmetric ones now factors as follows:716

ActCont =−→ Fam(Action) Fam(B̄)−−−−−→ Fam(SetBundle) Σ−→ SetBundle =−→ SymmCont717

In general, we do not know whether Σ is locally fully faithful or not. We can however718

consider its restriction to objects in the image of Fam(B̄), and deduce fully-faithfulness for719

some of its local functors:720

▶ Lemma 50. Let X,Y : Fam0(SetBundle). If all bundles in X have connected bases, then721

the local functor Σ1 : Fam1(X,Y )→ SetBundle(Σ0(X),Σ0(Y )) is fully faithful.722

Proof. The proof proceeds by showing that there is an equivalence of 2-cells. The assumption723

on connectedness is used as follows: Recall that X .= (J, λj. (Bj , Fj)) has connected bases if all724

Bj are connected groupoids. The base of the bundle Σ0(X) is
∑
j Bj , and maps between such725

bases are typed
∑
j Bj →

∑
k B
′
k. To characterize identifications of these maps, it is necessary726

show, given morphisms u, v : J → K, that the function u(j) = v(j)→ (Bj → u(j) = v(j))727

constant in Bj is an equivalence. But this follows from connectedness of Bj and the fact728

that u(j) = v(j) is a proposition [16, 7.5.9]. ◀729

▶ Theorem 51. The composite Σ ◦ Fam(B̄) : ActCont→ SymmCont is locally fully faithful.730

5 Conclusions731

We introduced action containers for studying data types with symmetries. This class of732

containers is inspired by quotient containers, but are different from the latter in two key733

aspects: First, symmetries are encoded by arbitrary groups acting on positions, allowing734

for more freedom in presenting permutations of positions. Second, morphisms are required735

to respect symmetries in a coherent way, and are additionally not equivalence classes of an736

ad-hoc relation. Instead, the category of action containers is presented universally as a free737

coproduct completion of a category of groups and actions, from which limits and colimits of738

action containers are easy to read off. We reintroduce the relation between morphisms in739
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terms of a 2-categorical structure, and show that the 2-category of action containers embeds740

into that of symmetric containers.741

A missing piece in our analysis is the relationship between quotient and action containers.742

The latter subsume the former, but morphisms of action containers are more constrained743

than those of quotient containers. Finding a functorial connection is not straightforward:744

Each action container (S ▷ P ◁σ G) can be mapped to a quotient container with the745

same set of shapes and positions, but for each s : S changing the group to Im(σs),746

which is a subgroup of S(Ps). Unfortunately this operation does not act on morphism747

(u ▷ f ◁ φ) : (S ▷ P ◁σ G)→ (T ▷ Q ◁τ H), since group homomorphisms φs : Gs .→ Hus do748

not generally restrict to the image of the actions Im(σs) .→ Im(τus). When restricted to a749

1-subcategory of action containers with faithful actions, this construction at least yields750

an isomorphism-on-objects functor ActContfaith → QuotCont.751

In the opposite direction, one could search for a functor between the category QuotCont752

and the homotopy category of ActCont, i.e. the category with the same objects but with753

sets of morphisms obtained by set quotienting 1-cells by 2-cells. We have a candidate754

if we modify Definition 5 of premorphism by turning the existential quantifier in the755

preservation of symmetries into a dependent sum: send a quotient container (S ▷P/G) to756

the action container with the same set of shapes and positions, but for each s : S changing757

the group to the free group generated by Gs, which also acts on Ps, though not in a758

faithful way. This modification allows at least the existence of an action of morphisms.759

We postpone a deeper investigation in this direction to future work.760

In Section 3.1 we analyzed some properties of the category of action containers, which761

ordinary containers also enjoy. Abbott et al. [2] also construct initial algebras and final762

coalgebras of containers in one parameter, while Altenkirch et al. [6] prove that the category763

of ordinary containers not only have exponentials with constants, it is cartesian closed. In764

future work we plan to investigate whether action containers also enjoy these properties.765

From previous investigations [11], we know that direct construction of final coalgebras766

for quotient containers fails constructively. In [4] however, Ahrens et al. show that for767

any U-valued container (with no restriction on truncation level of shapes or positions), its768

extension as a polynomial in U admits a final coalgebra. Since extensions of symmetric769

containers are U-polynomials as well, we would like to internalize this construction: first,770

find a symmetric container representing this coalgebra, then investigate if this restricts to the771

inclusion of action containers. Similarly, it should be possible to lift the closure properties of772

Section 3.1 from the underlying 1-category to proper 2-(co)limits in Action.773

In another direction we are interested to see if the heavy machinery of 2-categories can774

be avoided, or at least be postponed. This is guided by the following insight: The image775

on objects of the 2-functor B is not only groupoids, but pointed, connected groupoids. The776

2-category of such groupoids and pointed maps, displayed over hGpd is, surprisingly, locally777

thin [7, Lemma 4.4.12]. In other words, pointed, connected groupoids and pointed maps form778

a 1-category, and a slight modification of the proof of Proposition 36 shows that the 1-category779

of ordinary (or abstract) groups and this category of concrete groups are equivalent, and780

this equivalence seems to extend to categories of actions. We are led to believe that action781

containers, without any additional relation on morphisms, could identify a pointed structure782

on symmetric containers such that equality of morphisms becomes propositional. This could783

also elucidate the Σ-functor summing families of symmetric containers: its action on objects784

is surjective, since every (shape) groupoid S is a set-indexed sum of connected groupoids:785

S ≃
∑
s:∥S∥0

fiber|−|0 s where |−|0 : B → ∥B∥0 is the set truncation map. If all such fibers786

were pointed, this extra structure would present S as formal sum of concrete groups.787
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