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Overview

Goal of the talk
Introduce action containers to model data types with symmetries

Contents
▶ Background

▶ Endofunctors and algebraic data types
▶ Containers for polynomial functors

▶ Action containers
▶ Construction via universal property
▶ Closure properties

▶ 2-categorical interpretation: Embedding as 2-endofunctors of groupoids
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Endofunctors model algebraic data types

Many data types can be modeled in the category of Set-endofunctors:

List(X ) :=
∑
n:N

(Fin(n)→ X ) Maybe(X ) := 1 + X RoseTree(X ) := µY .X + List(Y )

New endofunctors can be built by “algebraic” manipulations:

“a pair of an F and a G”

F × G

“either an F or a G”

F + G

“a K -tuple of F s”

FK
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Containers: syntax for polynomials

The nice class of polynomial endofunctors is described by containers:

a container

(S ◁ P)

S : Set,P : S → Set

its interpretation as a polynomial

JS ◁ PK(X ) :=
∑
s:S

(P(s)→ X )

Sanity Check

J−K : Container→ Endo(Set) is a fully faithful functor.

Morphisms of containers describe exactly the morphisms of their interpretations.
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Non-polynomial endofunctors

Caveat
Not all interesting functors are covered by this framework.

Example

Finite multisets are not polynomial:

FMSet(X ) :=
∑
n:N

(Fin(n)→ X )/ ∼

The relation is generated by identifying tuples up to permutation:

(x1, . . . , xn) ∼ (xπ1, . . . , xπn) ∀π : Fin(n) ≃ Fin(n)
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Action containers

Definition
An action container F = (S ▷ P ◁σ G ) consists of

shapes a set S

positions a family of sets P : S → Set

symmetries a family of groups G : S → Group

actions a family of group actions: for each s : S , σs is an action of Gs on Ps

Intuition
Symmetries tell us under which permutations of positions the data type is invariant.

Interpretation

JS ▷ P ◁σ GK(X ) :=
∑
s:S

(Ps → X )/ ∼s v ∼s w := ∃g : Gs . v = w ◦ σs(g)
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Group actions?

Definition
An action of a group G on a set X is a group homomorphism σ : G → S(X ), where
S(X ) is the group of automorphisms X ≃ X .

Equivalently, a G -action on X is a functor Bσ : BG → Set

▶ BG is G seen as a 1-object groupoid

▶ the lone object • is sent to X

▶ loops g : • ∼−→ • are sent to σ(g) : X
∼−→ X
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Example: Finite multisets

Finite multisets are “lists up to permutation”, thus come from the permutation action:

FMSet = (n : N ▷ Fin(n) ◁id S(Fin(n))) id : S(Fin(n))→ S(Fin(n))

Its interpretation:

JFMSetKX =
∑
n:N

X n/∼

where (∼) is generated by

(x1, . . . , xn) ∼ (xπ(1), . . . , xπ(n)) ∀π : Fin(n) ≃ Fin(n)
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Example: Cyclic lists

Cyclic lists come from a Z-action on finite sets:

Cyc = (n : N ▷ Fin(n) ◁σn Z) σn : Z→ S(Fin(n))

where σn is generated from the successor automorphism,

sucn : Fin(n) ≃ Fin(n)

sucn(x) := x + 1 mod n
σn(k) := sucn ◦ · · · ◦ sucn︸ ︷︷ ︸

k times

In its interpretation,

JCycKX =
∑
n:N

X n/∼,

the relation (∼) is generated by

(x1, . . . , xn) ∼ (xn, x1, . . . , xn−1)
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Morphisms of action containers

A morphism of action containers preserves shapes, positions, and symmetries:

Definition
Let F = (S ▷ P ◁σ G ), G = (T ▷Q ◁τ H). A morphism (u ▷ f ◁ φ) : F → G consists of

▶ a function on shapes u : S → T

▶ a family of functions f :
∏

s:S Qus → Ps

▶ a family of group homomorphisms φ :
∏

s:S Gs
.→ Hus

such that the following diagram commutes for all s : S , g : Gs :

Qus Ps

Qus Ps

fs

fs

τus(φs(g)) σs(g)
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Comparision to quotient containers I

Our definitions are inspired by quotient containers,1 but there are differences:

Differences on objects

In a quotient container (S ▷ P/G ), the symmetries are restricted to subgroups of
permutation groups:

ιs : Gs ≤ S(Ps)

Action containers can describe symmetry groups larger than S(Ps) (e.g. the Z-action
in Cyc).
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Comparision to quotient containers II

Differences on morphisms

▶ Morphisms of quotient containers do not respect symmetries: for all g : Gs there
merely exists some h : Hus such that

Qus Ps

Qus Ps

fs

fs

ι′us(h) ιs(g)

as opposed to the output of a group homomorphism h
.
= φ(g).

▶ Morphisms of quotient containers are quotiented by some relation, such that
J−K/ : QuotCont→ Endo (Set) is fully faithful.

1Abbott, Altenkirch, Ghani, and McBride, “Constructing Polymorphic Programs with Quotient
Types”.
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Construction from universal property

The category of action containers is “just” families of group actions.

▶ For each shape s : S , there is some group (Gs) acting (σs) on some set (Ps).

▶ In a morphism, for each shape s there is some homomorphism (φs) and a function
(fs) that respect each other.

This suggests a modular construction.
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A category of group actions

We define a category Action of group actions and equivariant maps:

▶ Objects are triples (G ,P, σ), where σ is a G -action on P
▶ A morphism (φ, f ) : (G ,P, σ)→ (H,Q, τ) consists of

▶ a group homomorphism φ : G .→ H,
▶ a function f : P ← Q,

such that f is equivariant, i.e. for all g : G

Q P

Q P

f

f

τ(φ(g)) σ(g)

▶ Morphisms compose by pasting equivariance squares.

This is like the category of G -sets, except G can vary.
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Universal property

Definition (Fam-construction)

The free coproduct completion Fam(C ) of a category C :

objects pairs (S , x) of a set S and a family x : S → ob(C )

morphisms for (u, f ) : (S , x)→ (T , y), a function u : S → T and a family of
morphisms f :

∏
s:S C (xs , yus)

Theorem
The category of action containers is equivalent to the free coproduct completion of the
category of group actions:

ActionCont ≃ Fam(Action)
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Closure properties

Presenting ActionCont as Fam(Action) gives us closure properties:

Proposition

Action containers are closed under (arbitrary) coproducts and products.

Proof.
▶ coproducts: by construction

▶ products: Action is closed under products
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Closure under exponentiation

Definition
The constant container at a set J is kJ := (J ▷ 0 ◁id 1)

Why constant? Answer: JkJK(X ) ≃ J.

Proposition

Action containers are closed under exponentiation by constants: For any container F
and set J, there is a container F J and a universal morphisms eval : kJ × F J → F .
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A model of strictly positive types

Action containers model non-inductive single-variable strictly positive types.2

▶ strictly positive types are closed under products F × G , coproducts F + G and
constant exponentiation F J .

▶ single-variable: we do not consider indexed container3

▶ non-inductive: have not yet looked at smallest µX .F (X ,−) and largest
νX .F (X ,−) fixedpoints yet.

2Abbott, Altenkirch, and Ghani, “Containers: Constructing strictly positive types”.
3Conceptually not too hard, but requires more bookkeeping
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Properties of the interpretation

Caveat
The interpretation functor is no longer fully faithful.

Reason
Quotients in Set forget why morphisms have been identified.
The evidence is an element of a symmetry group, Gs .

Fix
Make the evidence part of the data, and interpret action containers in 2-endofunctors
of groupoids.
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Interpretation in groupoids

To interpret action containers in groupoids:

1. Enhance ActionCont into a 2-category, in small steps

2. Embed them into the 2-category of symmetric containers4

3. Compose with interpretation of the latter:

ActionCont SymmCont Endo(hGpd)
J−K

4Gylterud, “Symmetric Containers”.
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A 2-category of action containers

Present the 2-category ActionCont again as families of group actions:

▶ Group forms a 2-category5 with morphisms “up to conjugation”:

Group2(φ,ψ) :=
∑
r :H

φ = rψr91 ∀φ,ψ : Group1(G ,H)

(r is called a conjugator)

▶ Similarly for Action: 2-cells are conjugators that relate equivariant maps.

▶ 2-cells of FamC are families of 2-cells of C .

We define
ActionCont := Fam(Action)

5Hofstra and Karvonen, “Inner automorphisms as 2-cells”.
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Symmetric containers in HoTT

Definition
A symmetric container (S ◁ P) consists of

shapes an h-groupoid6 S

positions a function P : S → hSet

In HoTT, symmetries are internalized as paths:

▶ paths s = t in S encode symmetries on shapes

▶ symmetries of positions are induced functorially:

cong(P) : s = t → P(s) = P(t)

▶ interpretation in h-groupoids:

JS ◁ PKX :=
∑
s:S

P(s)→ X

6at most one proof p = q for all p, q : s = t in S
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The Delooping-construction

A group G defines a 1-object h-groupoid BG , implemented as a higher inductive type:

• : BG
g : G

loop g : • = •
g , h : G

loop-comp(g , h) : loop g · loop h = loop gh

By recursion on BG , each action σ : G .→ S(X ) defines a family

B̄σ : BG → hSet

Theorem
The above extend to 2-functors

B : Group→ hGpd B̄ : Action→ SymmCont

B̄(G , σ) := (BG ◁ B̄σ)

Both are locally weak equivalences.
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Symmetric containers from action containers I

We can embed single actions as symmetric containers:

Action SymmContB̄

We can lift this to families of such (i.e. action containers):

Theorem
The lifting Fam(B̄) : ActionCont→ Fam(SymmCont) is

1. locally fully faithful

2. locally a weak equivalence, assuming the axiom of choice
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Symmetric containers from action containers II

What’s missing?

ActionCont Fam(SymmCont) SymmContB̄ ???

Proposition

There is a 2-functor, summing families of symmetric containers:

Σ : Fam(SymmCont)→ SymmCont

The local functors

Σ1 : Fam1(X ,Y )→ SymmCont1(Σ0X ,Σ0Y )

are fully faithful if all shape groupoids of X are connected.
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Interpretation in groupoids

We can locally embed action containers in 2-endofunctors:

Theorem
The factorization

ActionCont Fam(SymmCont) SymmCont Endo(hGpd)
Fam(B̄) Σ J−K

is locally fully faithful.

Proof.
In the image of Fam(B̄), shape groupoids are connected.

This fully classifies 1- and 2-cells of action containers.
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Conclusion
We have. . .

▶ constructed action containers via a universal property

▶ showed closure under desirable operations

▶ connected them to symmetric containers

▶ embedded them as 2-endofunctors
▶ developed all of this in Cubical Agda:

▶ includes formalization of necessary 2-category theory

For a draft and the formalization:

https://phijor.me/publications/

2025-data-types-with-symmetries-via-action-containers.html

https://phijor.me/publications/2025-data-types-with-symmetries-via-action-containers.html
https://phijor.me/publications/2025-data-types-with-symmetries-via-action-containers.html
https://phijor.me/publications/2025-data-types-with-symmetries-via-action-containers.html
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