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Overview

Goal of the talk
Introduce action containers to model data types with symmetries

Contents
» Background

» Endofunctors and algebraic data types
» Containers for polynomial functors

» Action containers
» Construction via universal property
» Closure properties

> 2-categorical interpretation: Embedding as 2-endofunctors of groupoids



Endofunctors model algebraic data types

Many data types can be modeled in the category of Set-endofunctors:

List(X) := Z(Fin(n) — X) Maybe(X):=1+ X RoseTree(X) :=pY.X + List(Y)
n:N

New endofunctors can be built by “algebraic” manipulations:

“a pair of an F and a G" “either an F or a G" “a K-tuple of Fs"
FxG F+G FK



Containers: syntax for polynomials

The nice class of polynomial endofunctors is described by containers:

a container its interpretation as a polynomial
(SaP) [S < PI(X) = 3 _(P(s) = X)
S:Set,P:S — Set s:S

Sanity Check
[—] : Container — Endo(Set) is a fully faithful functor.

Morphisms of containers describe exactly the morphisms of their interpretations.



Non-polynomial endofunctors

Caveat
Not all interesting functors are covered by this framework.

Example
Finite multisets are not polynomial:

FMSet(X) := Y (Fin(n) = X)/ ~

mN
The relation is generated by identifying tuples up to permutation:

(X1, -y %n) ~ (Xx1,- - Xzn) V7 : Fin(n) ~ Fin(n)



Action containers

Definition
An action container F = (S> P < G) consists of
shapes a set S
positions a family of sets P : 5 — Set
symmetries a family of groups G : S — Group

actions a family of group actions: for each s: S, o5 is an action of G5 on Ps

Intuition
Symmetries tell us under which permutations of positions the data type is invariant.

Interpretation

[SoP<” GI(X) =) (Ps—X)/~s  veew:=3g: Gov=woosg)
s:S



Group actions?

Definition
An action of a group G on a set X is a group homomorphism o : G — &(X), where
GS(X) is the group of automorphisms X ~ X.

Equivalently, a G-action on X is a functor Bo : BG — Set
» BG is G seen as a 1-object groupoid
P the lone object o is sent to X

> loops g : e — e are sent to o(g) : X — X



Example: Finite multisets

Finite multisets are “lists up to permutation”, thus come from the permutation action:
FMSet = (n : N> Fin(n) <4 &(Fin(n))) id : &(Fin(n)) — &(Fin(n))
Its interpretation:

[FMSet]X = >~ X7/~
mN

where (~) is generated by

(X1, -+ Xn) ~ (Xe(1)s - -+ » Xn(n)) V7 : Fin(n) >~ Fin(n)



Example: Cyclic lists
Cyclic lists come from a Z-action on finite sets:
Cyc = (n: N> Fin(n) <°" Z) on : Z — S(Fin(n))
where o, is generated from the successor automorphism,

sucy, : Fin(n) ~ Fin(n)

on(k) :=sucpo---osuc,

such(x) :=x+1 mod n —_——
k times

In its interpretation,

[CyelX = X7/~
N
the relation (~) is generated by

(X1, -y Xn) ~ (Xny X1y -+ -y Xn—1)



Morphisms of action containers

A morphism of action containers preserves shapes, positions, and symmetries:
Definition
Let F=(S>P<?G), G=(Tr>Q< H). A morphism (u>f<yp): F— G consists of
» a function on shapes u:S — T
» a family of functions f : [[,.¢ Qus = Ps
» a family of group homomorphisms ¢ : [ .. Gs = Hus

such that the following diagram commutes for all s : S, g : Gg:

Qus —— P
@) |ot@)

Qusﬁps
s



Comparision to quotient containers |

Our definitions are inspired by quotient containers! but there are differences:

Differences on objects

In a quotient container (S > P/G), the symmetries are restricted to subgroups of
permutation groups:
s Gs < &(Ps)

Action containers can describe symmetry groups larger than S(Ps) (e.g. the Z-action
in Cyc).



Comparision to quotient containers Il

Differences on morphisms

» Morphisms of quotient containers do not respect symmetries: for all g : G5 there
merely exists some h : H,s such that

as opposed to the output of a group homomorphism h = ¢(g).

» Morphisms of quotient containers are quotiented by some relation, such that
[-], : QuotCont — Endo (Set) is fully faithful.

! Abbott, Altenkirch, Ghani, and McBride, “Constructing Polymorphic Programs with Quotient
Types".



Construction from universal property

The category of action containers is “just” families of group actions.
» For each shape s : S, there is some group (Gs) acting (0s) on some set (Ps).

» In a morphism, for each shape s there is some homomorphism (¢s) and a function
(fs) that respect each other.

This suggests a modular construction.



A category of group actions

We define a category Action of group actions and equivariant maps:

» Objects are triples (G, P,0), where o is a G-action on P
» A morphism (¢, f): (G,P,0) = (H, Q,T) consists of

» a group homomorphism ¢ : G = H,

» a function f: P < Q,

such that f is equivariant, i.e. forall g: G

Q—'-r

(ole))| la(@

Q*f>P

» Morphisms compose by pasting equivariance squares.
This is like the category of G-sets, except G can vary.



Universal property

Definition (Fam-construction)
The free coproduct completion Fam(C) of a category C:
objects pairs (S, x) of a set S and a family x : S — ob(C)
morphisms for (u,f) : (S,x) — (T,y), a function u:S — T and a family of
morphisms f : []..s C(Xs, Yus)

Theorem

The category of action containers is equivalent to the free coproduct completion of the
category of group actions:

ActionCont ~ Fam(Action)



Closure properties

Presenting ActionCont as Fam(Action) gives us closure properties:
Proposition
Action containers are closed under (arbitrary) coproducts and products.
Proof.

» coproducts: by construction

» products: Action is closed under products



Closure under exponentiation

Definition

The constant container at a set J is kJ := (J>0<1)
Why constant? Answer: [kJ](X) =~ J.

Proposition

Action containers are closed under exponentiation by constants: For any container F
and set J, there is a container F7 and a universal morphisms eval : kJ x F/ — F.



A model of strictly positive types

Action containers model non-inductive single-variable strictly positive types?

P strictly positive types are closed under products F x G, coproducts F + G and
constant exponentiation F7.

» single-variable: we do not consider indexed container?

» non-inductive: have not yet looked at smallest puX. F(X,—) and largest
vX. F(X,—) fixedpoints yet.

2Abbott, Altenkirch, and Ghani, “Containers: Constructing strictly positive types”.
3Conceptually not too hard, but requires more bookkeeping



Properties of the interpretation

Caveat
The interpretation functor is no longer fully faithful.

Reason

Quotients in Set forget why morphisms have been identified.

The evidence is an element of a symmetry group, Gs.

Fix

Make the evidence part of the data, and interpret action containers in 2-endofunctors
of groupoids.



Interpretation in groupoids

To interpret action containers in groupoids:

1. Enhance ActionCont into a 2-category, in small steps

2. Embed them into the 2-category of symmetric containers*
3. Compose with interpretation of the latter:

ActionCont ———— SymmCont A, Endo(hGpd)

*Gylterud, “Symmetric Containers” .



A 2-category of action containers

Present the 2-category ActionCont again as families of group actions:

» Group forms a 2-category® with morphisms “up to conjugation”:

Group, (i, Zgo—rwr Vo, ) : Groupy (G, H)

(r is called a conjugator)
» Similarly for Action: 2-cells are conjugators that relate equivariant maps.
» 2-cells of Fam C are families of 2-cells of C.

We define
ActionCont := Fam(Action)

®Hofstra and Karvonen, “Inner automorphisms as 2-cells”.



Symmetric containers in HoTT
Definition
A symmetric container (S < P) consists of
shapes an h-groupoid® S
positions a function P : S — hSet
In HoTT, symmetries are internalized as paths:
» paths s = t in S encode symmetries on shapes

P> symmetries of positions are induced functorially:
cong(P):s=t— P(s) = P(t)
> interpretation in h-groupoids:

[SaP]X =) P(s) = X
s:S

®at most one proof p=gq forall p,g:s=tin S



The Delooping-construction
A group G defines a 1-object h-groupoid BG, implemented as a higher inductive type
g, h:G

g:G
loop-comp(g, h) : loop g - loop h = loop gh

o :BG loopg:e=e
By recursion on BG, each action ¢ : G = &(X) defines a family

Bo : BG — hSet

Theorem
The above extend to 2-functors

B : Action — SymmCont

B : Group — hGpd
B(G,o) := (BG «Bo)

Both are locally weak equivalences.



Symmetric containers from action containers |

We can embed single actions as symmetric containers:

Action — 2 SymmCont

We can lift this to families of such (i.e. action containers):

Theorem B
The lifting Fam(B) : ActionCont — Fam(SymmCont) is
1. locally fully faithful

2. locally a weak equivalence, assuming the axiom of choice



Symmetric containers from action containers ||
What's missing?
ActionCont — > Fam(SymmCont) — ™ SymmCont
Proposition
There is a 2-functor, summing families of symmetric containers:
Y : Fam(SymmCont) — SymmCont
The local functors
Y : Famy(X, Y) — SymmCont, (XX, XoY)

are fully faithful if all shape groupoids of X are connected.



Interpretation in groupoids

We can locally embed action containers in 2-endofunctors:

Theorem
The factorization

ActionCont ="/ Fam(SymmCont) —=— SymmCont A, Endo(hGpd)

is locally fully faithful.

Proof.
In the image of Fam(B), shape groupoids are connected.

This fully classifies 1- and 2-cells of action containers.



Conclusion
We have. ..
constructed action containers via a universal property
showed closure under desirable operations
connected them to symmetric containers

embedded them as 2-endofunctors
developed all of this in Cubical Agda:
» includes formalization of necessary 2-category theory

vVvyyvyVvyy

For a draft and the formalization:

https://phijor .e/publications/
2025-data-types-with-symmetries-via-action-containers.html
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